## **GEORGIA DOT RESEARCH PROJECT 17-18**

Final Report

Development of Innovative & Effective Training Modules and Methods for Pavement Designers for Rapid Deployment and Continuous Operation of MEPDG



**Office of Performance-based Management and Research** 600 West Peachtree Street NW | Atlanta, GA 30308

## **TECHNICAL REPORT DOCUMENTATION**

| <b>1. Report No.</b>                                                                                     | 2. Government Accession No.                           | 3. Recipient's Catalog No. |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|
| 4. Title and Subtitle<br>Development of Innovative & Effective Train                                     | N/A<br>5. Report Date<br>August 2020                  |                            |
| Designers for Rapid Deployment and Contin                                                                | 6. Performing Organization Code<br>N/A                |                            |
| 7. Author(s)<br>S. Sonny Kim, Ph.D., P.E.; Hampton Worthe<br>Quintus, P.E.; Stephan A. Durham, Ph.D., P. | <b>8. Performing Organization Report No.</b><br>17-18 |                            |
| 9. Performing Organization Name and Ad                                                                   | 10. Work Unit No.                                     |                            |
| University of Georgia, C                                                                                 | N/A                                                   |                            |
| Driftmier Engineering Cen                                                                                | <b>11. Contract or Grant No.</b>                      |                            |
| Phone: (706) 542-9804, I                                                                                 | PI# 0015713                                           |                            |
| <b>12. Sponsoring Agency Name and Address</b>                                                            | <b>13. Type of Report and Period Covered</b>          |                            |
| Georgia Department                                                                                       | Final Report (October 2017–August 2020)               |                            |
| Office of Performance-based I                                                                            | <b>14. Sponsoring Agency Code</b>                     |                            |
| 600 West Peachtree Street I                                                                              | N/A                                                   |                            |

#### **15. Supplementary Notes**

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration

#### 16. Abstract

The American Association of State Highway and Transportation Officials (AASHTO) Joint Task Force on Pavements – in cooperation with the National Cooperative Highway Research Program (NCHRP) and the Federal Highway Association (FHWA) – sponsored the development of an AASHTO Mechanistic-Empirical (ME) pavement design procedure. NCHRP project 1-37A produced rudimentary software that utilized existing ME-based models and databases reflecting current state-of-the-art pavement design procedures. The Mechanistic-Empirical Pavement Design Guide (MEPDG) was completed in 2004 and released to the public for review and evaluation. A formal review was completed by an independent set of consultants under NCHRP Project 1-40A, and version 1.0 of the MEPDG was submitted in 2007 to NCHRP, FHWA, and AASHTO for further consideration as an AASHTO Standard Practice. The MEPDG was formally adopted by AASHTO as an Interim Guide in 2008. Pavement ME Design is a software upgrade to version 1.0 that became available in 2013. AASHTO is distributing and managing the software as an AASHTOWare product.

This User Input Guide is more of an engineering manual for determining the inputs needed for pavement design engineers in Georgia to begin to use Pavement ME Design. Many State Highway Agencies (SHAs) implementing Pavement ME Design conduct a local calibration or verification effort to establish local inputs and determine the calibration factors that result in unbiased predictions. Forensic investigations, including materials testing and pavement performance data, are needed to establish the accuracy and bias of the distress transfer functions and International Roughness Index (IRI) prediction models. GDOT also sponsored a local calibration effort and the results from that effort were used in preparing this User Input Guide.

This manual has been updated from the previous MEPDG training manual with recently measured materials properties, climate data, and traffic inputs.

| 17. Key Words                                                                            | 18. Distribution Statement |                         |                  |           |
|------------------------------------------------------------------------------------------|----------------------------|-------------------------|------------------|-----------|
| MEPDG, Pavement ME, Training                                                             |                            | No Restrictions         |                  |           |
| 19. Security Classification (of this report)20. Security (Unabassifiednage) Unabassified |                            | Classification (of this | 21. No. of Pages | 22. Price |
| Uliciassifieu                                                                            | page) Unclass              | silled                  | 165              | Flee      |

**GDOT Research Project 17-18** 

Final Report

## DEVELOPMENT OF INNOVATIVE & EFFECTIVE TRAINING MODULES AND METHODS FOR PAVEMENT DESIGNERS FOR RAPID DEPLOYMENT AND CONTINUOUS OPERATION OF MEPDG

By

S. Sonny Kim, Ph.D., P.E

Associate Professor Civil Engineering, College of Engineering University of Georgia Harold Von Quintus, P.E. Project Manager Applied Research Associates, Inc

Hampton Worthey Graduate Research Assistant Civil Engineering, College of Engineering University of Georgia Stephan Durham, Ph.D., P.E. Professor Civil Engineering, College of Engineering University of Georgia

Wouter Brink, Ph.D. Senior Civil Engineer Transportation and Infrastructure Division Applied Research Associates, Inc Mi G. Chorzepa Associate Professor Civil Engineering, College of Engineering University of Georgia

Contract with Georgia Department of Transportation In cooperation with U.S. Department of Transportation Federal Highway Administration

#### August 2020

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

# DISCLAIMER STATEMENT

This document is disseminated under the sponsorship of the Georgia Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Georgia and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the Georgia Department of Transportation or the United States Department of Transportation.

The State of Georgia and the United States Government do not endorse products of manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

| SI* (MODERN METRIC) CONVERSION FACTORS               |                                |                     |                            |                                  |  |
|------------------------------------------------------|--------------------------------|---------------------|----------------------------|----------------------------------|--|
|                                                      | APF                            | ROXIMATE CONVERSIO  | NS TO SI UNITS             |                                  |  |
| Symbol                                               | When You Know                  | Multiply By         | To Find                    | Symbol                           |  |
|                                                      |                                | LENGTH              |                            |                                  |  |
| In                                                   | Inches                         | 25.4                | Millimeters                | mm                               |  |
| Ft                                                   | Feet                           | 0.305               | Meters                     | m                                |  |
| Mi                                                   | Miles                          | 0.914               | Kilometers                 | lii<br>km                        |  |
| IAII                                                 | Wiles                          | AREA                | Niometers                  | KIII                             |  |
| in²                                                  | square inches                  | 645.2               | square millimeters         | mm <sup>2</sup>                  |  |
| ft²                                                  | square feet                    | 0.093               | square meters              | m <sup>2</sup>                   |  |
| yd²                                                  | square yard                    | 0.836               | square meters              | m <sup>2</sup>                   |  |
| Ac                                                   | Acres                          | 0.405               | Hectares                   | ha                               |  |
| mi <del>*</del>                                      | square miles                   | 2.59<br>VOLUME      | square kilometers          | кт <del>²</del>                  |  |
| floz                                                 | fluid ounces                   | 29.57               | Milliliters                | ml                               |  |
| Gal                                                  | Gallons                        | 3.785               | Liters                     | L                                |  |
| ft <sup>3</sup>                                      | cubic feet                     | 0.028               | cubic meters               | m <sup>3</sup>                   |  |
| yd³                                                  | cubic yards                    | 0.765               | cubic meters               | m <sup>3</sup>                   |  |
| [NOTE: volumes greater                               | ater than 1,000 shall be shown | in m <sup>3</sup> ] |                            |                                  |  |
| <u> </u>                                             | 0                              | MASS                | 0                          |                                  |  |
| UZ                                                   | Ounces                         | 28.35               | Grams                      | g                                |  |
| Т                                                    | short tons (2000 lb)           | 0.454               | megagrams (metric tons)    | kg<br>Ma (or t)                  |  |
|                                                      | 31017 (2000 15)                | TEMPERATURE (exa    | ct dearees)                |                                  |  |
| °F                                                   | Fahrenheit 5                   | (F-32)/9            | Celsius                    | °C                               |  |
|                                                      | or (F-32)/1.8                  | · · ·               |                            |                                  |  |
|                                                      |                                | ILLUMINATIO         | N                          |                                  |  |
| Fc                                                   | foot-candles                   | 10.76               | Lux                        | lx                               |  |
| FI                                                   | foot-Lamberts                  | 3.426               | candela/m <sup>2</sup>     | cd/m <sup>2</sup>                |  |
|                                                      |                                | FORCE and PRESSUR   | E or STRESS                |                                  |  |
| Lbf                                                  | Pounds                         | 4.45                | Newtons                    | N                                |  |
| IDT/IN <sup>2</sup> (pSI)<br>k/in <sup>2</sup> (ksi) | pounds per square inch         | 6.89                | KIIOPascals<br>mogaPascals | KPa<br>MPa                       |  |
| K/III- (KSI)                                         | DENSITY                        | 0.09                | Illegar ascals             | IVIF a                           |  |
| lb/ft <sup>3</sup> (pcf)                             | pounds per cubic foot          | 16.02               | kilograms per cubic meter  | kg/m <sup>3</sup>                |  |
| , , , , , , , , , , , , , , , , , , ,                | APPR                           | OXIMATE CONVERSION  | S FROM SI UNITS            |                                  |  |
| Symbol                                               | When You Know                  | Multiply By         | To Find                    | Symbol                           |  |
| Symbol                                               | When You Know                  |                     | TO FIN                     | Symbol                           |  |
| Mm                                                   | Millimeters                    | 0.039               | Inches                     | in                               |  |
| м                                                    | Meters                         | 3.28                | Feet                       | ft                               |  |
| M                                                    | Meters                         | 1.090               | Yards                      | vd                               |  |
| Km                                                   | Kilometers                     | 0.621               | Miles                      | mi                               |  |
| _                                                    |                                | AREA                |                            |                                  |  |
| mm <sup>2</sup>                                      | square millimeters             | 0.0016              | square inches              |                                  |  |
| m²<br>m²                                             | square meters                  | 10.764              | square teet                | π <sup>2</sup>                   |  |
| Ha                                                   | Hectares                       | 2 47                | Square yards               | yu-<br>ac                        |  |
| km <sup>2</sup>                                      | square kilometers              | 0.386               | square miles               | mi <sup>2</sup>                  |  |
|                                                      |                                | VOLUME              | •                          |                                  |  |
| mL                                                   | Milliliters                    | 0.034               | fluid ounces               | fl oz                            |  |
| L                                                    | Liters                         | 0.264               | Gallons                    | gal                              |  |
| m <sup>3</sup>                                       | cubic meters 35.314            | 1 0 0 7             | cubic feet                 | ft                               |  |
| m°                                                   | cubic meters                   | 1.307               | cubic yards                | yds                              |  |
| G                                                    | Grams                          | 0.035               | Ounces                     | 07                               |  |
| Ka                                                   | Kilograms                      | 2.202               | Pounds                     | lb                               |  |
| Mg (or t)                                            | megagrams (metric tons)        | 1.103               | short tons (2000 lb)       | Ť                                |  |
|                                                      |                                | TEMPERATURE (exa    | ct degrees)                |                                  |  |
| °C                                                   | Celsius                        | 1.8C+32             | Fahrenheit                 | °F                               |  |
|                                                      |                                | ILLUMINATIO         | DN                         |                                  |  |
| lx .                                                 | Lux                            | 0.0929              | foot-candles               | fc                               |  |
| cd/m <sup>2</sup>                                    | candela/m <sup>2</sup>         | 0.2919              | foot-Lamberts              | fl                               |  |
| N                                                    | Neutono                        | PORCE and PRESSUR   | E OF SIKESS                |                                  |  |
| k Pa                                                 | NEWLOIIS<br>kiloPascals        | 0.220               | rounds per square inch     | LDI<br>Ibf/ip <sup>2</sup> (pci) |  |
| Мра                                                  | MegaPascals                    | 0.145               | kips per square inch       | k/in <sup>2</sup> (ksi)          |  |
|                                                      |                                | DENSITY             | ··· ber edeer e uion       | (10)                             |  |
|                                                      |                                |                     |                            |                                  |  |

\*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E 380. (Revised March 2003)

# TABLE OF CONTENTS

| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | viii                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xi                                                                         |
| EXECUTIVE SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | xii                                                                        |
| CHAPTER 1—INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                          |
| <ul> <li>CHAPTER 2—OVERVIEW OF THE MEPDG DESIGN METHODOLOGY.</li> <li>2.1 DISTRESS TRANSFER FUNCTIONS INCLUDED IN PMED SOFTWARE</li> <li>2.2 PAVEMENT DESIGN STEPS USING PAVEMENT ME DESIGN SOFTWARE</li> <li>2.3 INPUT CATEGORIES</li></ul>                                                                                                                                                                                                                                                                                                                      | 3<br>5<br>11<br>14                                                         |
| <ul> <li>CHAPTER 3—GENERAL PROJECT INFORMATION</li> <li>3.1 DESIGN AND PAVEMENT TYPE STRATEGIES</li> <li>3.1.1 New/Reconstructed Flexible Pavements and HMA Overlays</li> <li>3.1.2 New/Reconstructed Rigid Pavements and PCC Overlays</li> <li>3.1.3 Pavement Preservation and Preventive Maintenance</li> <li>3.2 PROJECT FILE/NAME</li> <li>3.3 DESIGN LIFE</li> <li>3.4 BASE AND PAVEMENT CONSTRUCTION &amp; TRAFFIC OPENING DATES</li> <li>3.4.1 New Construction</li> <li>3.4.2 Rehabilitation</li> <li>3.5 SCREEN SHOTS FOR GENERAL INFORMATION</li> </ul> | 16<br>17<br>19<br>20<br>21<br>21<br>21<br>21<br>23<br>23                   |
| <ul> <li>CHAPTER 4—PERFORMANCE CRITERIA</li> <li>4.1 INITIAL INTERNATIONAL ROUGHNESS INDEX (IRI)</li> <li>4.2 DISTRESS CRITERIA OR THRESHOLD VALUES</li> <li>4.2.1 Terminal IRI Criterion</li> <li>4.2.2 Fatigue (Load-Related) Cracking Criterion—Flexible Pavements</li> <li>4.2.3 Permanent Deformation (Rut Depth) Criterion—Flexible Pavements</li> <li>4.3 DESIGN RELIABILITY</li> <li>4.4 SCREEN SHOTS FOR THE PERFORMANCE CRITERIA</li> </ul>                                                                                                             | 25<br>26<br>28<br>28<br>30<br>30<br>32                                     |
| CHAPTER 5—TRAFFIC INPUTS<br>5.1 AVERAGE ANNUAL DAILY TRUCK TRAFFIC (TRAFFIC VOLUME INPUTS)<br>5.2 TRAFFIC CAPACITY<br>5.3 AXLE CONFIGURATION<br>5.4 LATERAL WANDER<br>5.5 WHEEL BASE<br>5.6 VEHICLE CLASS DISTRIBUTION AND GROWTH<br>5.7 MONTHLY ADJUSTMENT<br>5.8 HOURLY ADJUSTMENT<br>5.9 AXLES PER TRUCK CLASS<br>5.10 AXLE LOAD DISTRIBUTION FACTORS<br>5.11 SCREEN SHOTS FOR THE TRAFFIC INPUTS                                                                                                                                                              | 36<br>38<br>38<br>39<br>39<br>39<br>40<br>42<br>45<br>45<br>45<br>46<br>47 |
| CHAPTER 6—CLIMATE INPUTS<br>6.1 PROJECT LOCATION INFORMATION<br>6.2 DEPTH TO WATER TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52<br>52<br>53                                                             |

| 6.3 CL           | IMATE STATIONS                                                          | 54       |
|------------------|-------------------------------------------------------------------------|----------|
| 6.4 CF           | REATION OF SIMULATED CLIMATE STATION                                    | 55       |
| 6.5 US           |                                                                         | 56       |
| 6.6 SC           | REEN SHUTS FOR THE CLIMATE INPUTS                                       | 60       |
| CHAPTER 7        |                                                                         | 62       |
| 7.1 AC           | ; (HMA) LAYER PROPERTIES: NEW AND EXISTING LAYERS                       | 62       |
| 7.1.1            | Multi-Layer Rutting Calibration Parameters                              | 62       |
| 7.1.2            | HMA/AC Surface Shortwave Absorptivity                                   | 62       |
| 7.1.3            | Endurance Limit                                                         | 63       |
| 7.1.4            | Layer Interface Friction                                                | 63       |
| 7.1.5            | Renabilitation: Condition of Existing Flexible Pavement                 | 63       |
| 7.1.0            | Scroon Shots for the AC (HMA) Layer Properties: New and Existing Layers | 07       |
| 72 ID            | CP. NEW AND EXISTING LAVERS                                             | 60       |
| 7.2 JF           | PCC Surface Shortwave Absorptivity                                      | 60       |
| 7.2.1            | Joint Spacing                                                           | 69       |
| 7.2.3            | Sealant Type                                                            | 69       |
| 7.2.4            | Dowels                                                                  | 69       |
| 7.2.5            | Widened Slab                                                            | 70       |
| 7.2.6            | Tied Shoulders                                                          | 70       |
| 7.2.7            | Erodibility Index                                                       | 70       |
| 7.2.8            | PCC-Base Contact or Interface Friction for JPCP                         | 70       |
| 7.2.9            | Pavement Curl/Warp Effective Temperature Difference                     | 71       |
| 7.2.10           | Foundation Support for Rehabilitation of Rigid Pavements                | 72       |
| 7.2.11           | Condition of Existing PCC Surface for JPCP Rehabilitation Design        | 72       |
| 7.2.12           | Screen Shots for the JPCP Layer Properties: New and Existing Layers     | 73       |
| 7.3 CF           | RCP: NEW AND EXISTING LAYERS                                            | 76       |
| 7.3.1            |                                                                         |          |
| 7.3.2            | Screen Shots for the CRCP Layer Properties: New and Existing Layers     | //       |
| CHAPTER 8        | -LAYER/MATERIAL PROPERTY INPUTS                                         | 79       |
| 8.1 PA           | VEMENT LAYERS FOR FLEXIBLE PAVEMENT DESIGN                              | 79       |
| 8.1.1            | HMA and Asphalt Stabilized Base Layers                                  | 79       |
| 8.1.2. B         | ase Layers                                                              | 83       |
| 8.1.3. S         | tabilized Subgrade                                                      | 84       |
| 8.1.4. E         | mbankment/Foundation Layers or Subgrade                                 | 85       |
| 8.1.5. B         |                                                                         | 85       |
| 8.2 PA           | VEMENT LAYERS FOR RIGID PAVEMENT DESIGN                                 | 85       |
| 8.2.1. J         | PCP or CRCP Layers                                                      | 86       |
| 0.2.2. D         | ase Layers                                                              | 80       |
| 0.2.3.3<br>821 E | mbankment/Eoundation Layers or Subgrade                                 | 07       |
| 0.2.4. E         | PHALT CONCRETE (AC)                                                     | 07       |
| 8.3.1            | Asphalt Laver Thickness                                                 | 07<br>87 |
| 832              | Mixture Volumetric Properties                                           | 88       |
| 8.3.3            | Mechanical Properties                                                   |          |
| 8.3.4            | Thermal Properties                                                      | 94       |
| 8.3.5            | Screen Shots for the AC Properties: New and Existing Layers             | 95       |
| 8.4 PC           | ORTLAND CEMENT CONCRETE (PCC) – NEW MIXES                               | 97       |

| 8.4.1 General Properties                                              |     |
|-----------------------------------------------------------------------|-----|
| 8 4 3 Mix Physical Properties: New and Intact Existing PCC Slabs      | 101 |
| 8.4.4 Strength Properties                                             |     |
| 8.4.5 Screen Shots for the PCC Properties: New Layers                 |     |
| 8.5 PORTLAND CEMENT CONCRETE (PCC) – EXISTING FOR                     |     |
| REHABILITATION DESIGNS                                                | 109 |
| 8.5.1 Existing Intact PCC Slabs                                       | 109 |
| 8.5.2 Fractured PCC Slabs                                             | 110 |
| 8.5.3 Screen Shots for the Fractured PCC Properties                   | 111 |
| 8.6 UNBOUND AGGREGATE BASE MATERIALS AND SOILS                        |     |
| 8.6.1 General Physical and Volumetric Properties                      |     |
| 8.6.2 Resilient Modulus                                               |     |
| 8.6.4 Hydraulia Droportion                                            | 120 |
| 8.6.5 Screen Shots for the Unbound Base and Subgrade Layer Properties | 121 |
| 8.7 CEMENT AGGREGATE BASE MIXTURES                                    | 124 |
| 8.8 STABILIZED SUBGRADE FOR STRUCTURAL LAYERS                         | 125 |
| 8.8.1 Screen Shots for the Stabilized Base/Subgrade Laver Properties. |     |
| 8.9 BEDROCK                                                           |     |
| 8.9.1 Screen Shots for the Bedrock Properties                         | 128 |
| CHAPTER 9-GEORGIA CALIBRATION FACTORS                                 | 130 |
| 9.1 BASELINE FILES FOR THE CALIBRATION FACTORS                        | 131 |
| 9.2 TRANSFER FUNCTION CALIBRATION COEFFICIENTS.                       |     |
| 9.3 SCREEN SHOTS FOR THE CALIBRATION COEFFICIENTS                     |     |
|                                                                       | 100 |
| 10.1 IMDI EMENTATION ACTIVITIES                                       | 120 |
| 10.2 REMAINING IMPLEMENTATION ITEMS                                   | 130 |
| 10.2 1 Truck Traffic Input Library                                    | 141 |
| 10.2.2 Climate Data                                                   |     |
| 10.2.3. Materials/Layer Input Library                                 | 141 |
| 10.2.4. Recalibration and Verification                                | 143 |
| 10.3 CONCLUSIONS                                                      | 144 |
| CHAPTER 11—INPUT WORKSHEET                                            | 146 |
| APPENDIX A—HMA DATABASE (KIM et al., 2019)                            | 162 |
| APPENDIX B—UNBOUND LAYER MATERIAL PROPERTIES (KIM et al., 2013)       |     |
| REFERENCES                                                            |     |

# LIST OF TABLES

| Table 2.1—Performance Indicators Predicted by Pavement ME Design                                                                                                        | 4       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table 2.2—Example Design Features to Revise for Flexible Pavement and HMA Overlay         Designs Not Meeting the Design Criteria or Target Reliability                 | .12     |
| Table 2.3—Example Design Features to Revise for Jointed Plain Concrete Pavement and           Overlay Designs Not Meeting the Design Criteria or Target Reliability     | 13      |
| Table 2.4—Example Design Features to Revise for Continuously Reinforced Concrete<br>Pavement and Overlay Designs Not Meeting the Design Criteria or Target Reliability. | 14      |
| Table 2.5—Hierarchical Input Levels                                                                                                                                     | .15     |
| Table 3.1—Calibration Factors Recommended for New/Reconstructed Pavement Designs                                                                                        | .16     |
| Table 3.2—Construction and Traffic Opening Dates                                                                                                                        | .22     |
| Table 4.1—Initial IRI Values                                                                                                                                            | .26     |
| Table 4.2— Flexible Pavement and HMA Overlay Design Criteria or Threshold Values                                                                                        | 27      |
| Table 4.3— Jointed Plain Concrete Pavement Design Criteria or Threshold Values                                                                                          | .27     |
| Table 4.4— Continuously Reinforced Concrete Pavement Design Criteria or Threshold Value                                                                                 | s<br>27 |
| Table 4.5— Composite and/or Semi-Rigid Pavement Design Criteria or Threshold Values                                                                                     | .28     |
| Table 4.6—Terminal IRI and Corresponding GDOT HRI Ratings or Values                                                                                                     | .29     |
| Table 4.7—Reliability Level Recommended for Use with Pavement ME Design                                                                                                 | .32     |
| Table 5.1—Lane Distribution Factor Recommended for Use with Pavement ME Design                                                                                          | .37     |
| Table 5.2—Median Truck Traffic Classification Groups Common to Georgia Roadways                                                                                         | .41     |
| Table 5.3—Monthly Adjustment Factors for Non-Freight Routes; Seasonally Dependent                                                                                       | .43     |
| Table 5.4—Monthly Adjustment Factors for Freight Routes; Seasonally Independent                                                                                         | .44     |
| Table 5.5—Hourly Distribution Factors Recommended for Georgia                                                                                                           | .45     |
| Table 5.6—Default Values for the Number of Axles per Truck Class                                                                                                        | .46     |
| Table 5.7—Normalized Axle Load Distribution Files included in the GDOT Database Library                                                                                 | .47     |
| Table 5.8—Normalized Axle Load Distribution Factors for Vehicle Class 9 Tandem Axles                                                                                    | .47     |
| Table 6.1—Annual Depth to Water Table Recommended for Use                                                                                                               | .54     |
| Table 6.2—Climate Stations Available from AASHTOWare for Georgia                                                                                                        | .56     |
| Table 6.3—Climate Stations Available from Custom Database for Georgia (To be updated when climate research is finalized)                                                | 57      |
| Table 7.1—Ratios to Distribute Total Rut Depth to Individual Layers                                                                                                     | 64      |
| Table 7.2—MEPDG Condition Ratings for the GDOT PACES Rating or Composite Pavement Condition Index                                                                       | t<br>67 |

| Table 7.3—Erodibility Category Index Recommended for Different Base Materials                                                                                             | 71           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Table 7.4—Base/Slab Friction Coefficient Recommended based on Different Layers below                                                                                      | 77           |
| CRCP (AASHIO, 2013)                                                                                                                                                       | <i>11</i>    |
| Table 8.1—Winimum and Waximum Layer Thicknesses                                                                                                                           | 82           |
| Table 8.2—HMA/AC Layer Thickness Ratios (R) to be Used in Combining Thin Layers with<br>Lower Dense-Graded HMA/AC Layers                                                  | 82           |
| Table 8.3—Volumetric Properties for Georgia's Dense-Graded Mixtures                                                                                                       | 88           |
| Table 8.4—HMA Mixtures with Level 1 Dynamic Modulus                                                                                                                       | 90           |
| Table 8.5—Binder Grades Typically Used in Georgia's Dense-Graded Mixtures                                                                                                 | 92           |
| Table 8.6—Gradation for Georgia's Dense-Graded Mixtures                                                                                                                   | 93           |
| Table 8.7—Georgia Concrete Mixture Properties                                                                                                                             | 98           |
| Table 8.8—Georgia Concrete Fresh Mixture Properties                                                                                                                       | 99           |
| Table 8.9—Poisson's Ratio for Georgia Concrete Mixtures                                                                                                                   | 99           |
| Table 8.10—CTE for Georgia Concrete Mixtures                                                                                                                              | .100         |
| Table 8.11—Recommended CTE Values for PCC Mixtures in Georgia that Contain Type I         Portland Cement and Natural Sand (Kim, 2013)                                    | .100         |
| Table 8.12—Recommended PCC Aggregate by Source                                                                                                                            | .102         |
| Table 8.13—Time Dependent Compressive Strength for Georgia Concrete Mixtures                                                                                              | .104         |
| Table 8.14—Time Dependent Elastic Modulus for Georgia Concrete Mixtures                                                                                                   | .105         |
| Table 8.15—Time Dependent Modulus of Rupture for Georgia Concrete Mixtures                                                                                                | .106         |
| Table 8.16—Recommended Effective Modulus Values for Existing Intact PCC Slabs                                                                                             | .110         |
| Table 8.17—Recommended Modulus Values for Fractured and Rubblized PCC Slabs                                                                                               | .111         |
| Table 8.18—Material Library Subgrade Properties                                                                                                                           | .113         |
| Table 8.19—Resilient Modulus Values for Granular Aggregate Base Materials in Georgia                                                                                      | .115         |
| Table 8.20—Resilient Modulus Values Derived for Selected Subgrade Soils in Georgia                                                                                        | .115         |
| Table 8.21—Resilient Modulus Values Derived for Subgrade Soil from DCP Tests for Use in Georgia                                                                           | .118         |
| Table 8.22—Summary of the Adjustment Factors Recommended for Use in Georgia to Cong           Backcalculated Layer Modulus Values to Laboratory Equivalent Modulus Values | /ert<br>.119 |
| Table 8.23—Poisson's Ratio Suggested for Use for Unbound Layers                                                                                                           | .120         |
| Table 8.24—28-Day Strength and Elastic Moduli Suggested for Use for Cement Aggregate         Base Layers                                                                  | .125         |
| Table 8.25—Resilient Modulus and Poisson's Ratio Values Suggested for Use for Stabilized Subgrade Layers                                                                  | 125          |
| Table 8.26—Layer Properties for Bedrock                                                                                                                                   | .128         |
| Table 9.1— Input Levels used in Calibration of PMED Transfer Functions                                                                                                    | .130         |

| Table 9.2— GDOT Baseline Files                                                                                           | 132          |
|--------------------------------------------------------------------------------------------------------------------------|--------------|
| Table 9.3— HMA/AC Rutting: GDOT Calibration Factors                                                                      | 133          |
| Table 9.4— Unbound Layer Rutting: GDOT Calibration Factors                                                               | 134          |
| Table 9.5— HMA/AC Bottom-Up Fatigue Cracking: GDOT Calibration Factors                                                   | 134          |
| Table 9.6—HMA/AC Thermal Transverse Cracking: GDOT Calibration Factors                                                   | 134          |
| Table 9.7—JPCP Mid-Slab Cracking: GDOT Calibration Factors (Use for all JPCP Applicati         Overlays and Restoration) | ions:<br>134 |
| Table 9.8—JPCP Faulting: GDOT Calibration Factors (Use for all JPCP Applications: Overl           and Restoration)       | ays<br>135   |
| Table 9.9—CRCP Punchout: GDOT Calibration Factors (All CRCP Applications)                                                | 135          |

# LIST OF FIGURES

| Figure 2.1—Conceptual Flow Chart of the MEPDG Three-Stage Design/Analysis Process 1<br>AASHTOWare PMED (AASHTO, 2015)                                | for<br>6 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 2.2—MEPDG Output Summary Sheet                                                                                                                | 9        |
| Figure 5.1—Freight Routes Identified in Georgia                                                                                                      | 44       |
| Figure 6.1—MEERA-2 Grid Cell Locations                                                                                                               | 55       |
| Figure 7.1—Relationship between GDOT's Load Cracking Number (All Severity Levels) included in PACES and the Total Area of Alligator Fatigue Cracking | 66       |
| Figure 8.1—New Pavement Structures Typically Required by GDOT                                                                                        | 81       |
| Figure 8.2—HMA Database Collection Regions                                                                                                           | 91       |
| Figure 8.3—Subgrade Classification and Modulus Inputs by County                                                                                      | 116      |
| Figure 8.4—Estimating the Resilient Modulus from the Optimum Water Content                                                                           | 120      |
| Figure 8.5—Limiting Layer Modulus Criterion of Unbound Aggregate Base Layers                                                                         | 122      |

## **EXECUTIVE SUMMARY**

From the early 1960's through 1993, all versions of the American Association of State Highway and Transportation Officials (AASHTO) Design Guide were based on the empirical performance equations developed from the American Association of State Highway Officials (AASHO) Road Test (*AASHTO 1993*). The need for and benefits of a mechanistic-based pavement design procedure were recognized at the time when the 1986 Design Guide was adopted (*AASHTO 1986*). To meet that need, the AASHTO Joint Task Force on Pavements – in cooperation with the National Cooperative Highway Research Program (NCHRP) and the Federal Highway Association (FHWA) – sponsored the development of an AASHTO Mechanistic-Empirical (ME) pavement design procedure. NCHRP project 1-37A (*ARA 2004a,b,c,d*) produced rudimentary software that utilized existing ME-based models and databases reflecting current state-of-the-art pavement design procedures.

The Mechanistic-Empirical Pavement Design Guide (MEPDG) was completed in 2004 and released to the public for review and evaluation. A formal review was completed by an independent set of consultants under NCHRP Project 1-40A, and version 1.0 of the MEPDG was submitted in 2007 to NCHRP, FHWA, and AASHTO for further consideration as an AASHTO Standard Practice. The MEPDG was formally adopted by AASHTO as an Interim Guide in 2008 (*AASHTO, 2008*). Pavement ME Design is a software upgrade to version 1.0 that became available in 2013. AASHTO is distributing and managing the software as an AASHTOWare product.

This User Input Guide is more of an engineering manual for determining the inputs needed for pavement design engineers in Georgia to begin to use Pavement ME Design. Many State Highway Agencies (SHAs) implementing Pavement ME Design conduct a local calibration or

Xİİ

verification effort to establish local inputs and determine the calibration factors that result in unbiased predictions. Forensic investigations, including materials testing and pavement performance data, are needed to establish the accuracy and bias of the distress transfer functions and International Roughness Index (IRI) prediction models. Georgia Department of Transportation (GDOT) also sponsored a local calibration effort and the results from that effort were used in preparing this User Input Guide.

This manual has been updated from the previous MEPDG training manual (Report No. FHWA/GA-DOT-RD-014-1117) with recently measured materials properties, climate data, and traffic inputs.

## GENERAL NOTE:

The final report for this project discusses the recommended default values to be used in design for the primary pavement design and rehabilitation strategies used in Georgia.

## **CHAPTER 1—INTRODUCTION**

The Georgia Department of Transportation (GDOT) currently uses the American Association of State Highway and Transportation Officials (AASHTO) Interim Design Guide for Design of Pavement Structures 1972 Chapter III Revised, 1981 for new pavement and rehabilitation design. As of 2008, however, AASHTO no longer supports this empirical-based pavement design procedure. AASHTO is supporting use of a mechanistic-empirical (ME) based procedure for both new and rehabilitation design of flexible and rigid pavements.

An ME based design method represents a rational engineering approach that has been used by some agencies to replace the empirical AASHTO Guide for Design of Pavement Structures *(AASHTO, 1993)*. The primary advantage of an ME based design system is that it is based on pavement fracture and deformation characteristics of all layers, rather than solely on the pavement's surface condition (ride quality).

The Mechanistic-Empirical Pavement Design Guide (MEPDG), developed under National Cooperative Highway Research Program (NCHRP Project 1-37A, is a ME based method for designing new and rehabilitated flexible and rigid pavements (*ARA, 2004*). The concepts of ME based methods allow the pavement design engineer to quantify the effect of changes in materials, load, climate, age, and construction practices on pavement performance. Such a rational engineering design approach provides a reliable and cost-effective method of diagnosing pavement problems, as well as forecasting maintenance and rehabilitation needs. AASHTO adopted this procedure in 2008 and published the first edition of the Mechanistic-Empirical Pavement Design Guide - A Manual of Practice (MOP) for its use (*AASHTO, 2008*). A second edition of the MOP was published in 2015 and is included with the current version of the design software. A third edition was balloted and approved by AASHTO Committee of Materials and Pavements (COMP) and was published in early 2020.

1

This Input Guide was prepared for use by GDOT to determine the inputs for the AASHTOWare Pavement ME Design (PMED) software and to provide guidance on the use of PMED.

## CHAPTER 2—OVERVIEW OF THE MEPDG DESIGN METHODOLOGY

The MOP is based on ME design concepts, which means that the design procedure calculates pavement responses such as stresses, strains, and deflections, and accumulates the incremental damage from these responses over time. The procedure empirically relates the calculated responses in terms of damage to pavement distresses observed on roadway segments over time. This ME based procedure is shown in flowchart form in Figure 2.1. For a more complete discussion of the ME based concepts, procedure and transfer functions used to predict distress and smoothness, the designer is referred to the MOP, as well as to the "HELP" manual that is included in the PMED software and the NCHRP project 1-37A reports (*ARA, 2004 a,b,c,d*).

This chapter of the Input Guide provides an overview of the transfer functions, design steps, input categories, and hierarchical input approach included in the MOP. The remaining chapters of this Input Guide are focused on determining the inputs to the software for predicting distress and smoothness over the design life of the pavement structure.

## 2.1 DISTRESS TRANSFER FUNCTIONS INCLUDED IN PMED SOFTWARE

Chapter 5 in the MOP Second Edition includes a summary of the transfer functions for all types of pavements that are included in the MEPDG design and analysis methodology (AASHTO, 2015, 2020). Table 2.1 lists the performance indicators and the type of model or equation used to predict performance for use in design for each family of pavements included in the PMED software. Table 2.1 also lists the transfer functions and regression equations that are recommended for use in Georgia and whether or not they were locally calibrated for current versions of the software. The different pavement types are defined in Chapter 3 and local calibration is outlined in Chapter 9. In Table 2.1, the types pf pavement include flexible pavement and Hot Mix Asphalt (HMA) Overlays, inverted pavement, semi-rigid pavement, and rigid pavement such as Joint Plain

Concrete Pavement (JPCP), Continuous Reinforced Concrete Pavement (CRCP), and Short Joint Plain Concrete Pavement (SJPCP).

| Type of Pavement Performance Indicator |                     | Type of<br>Model <sup>3</sup>                                            | Recommended for<br>Use in Georgia                    | Calibrated<br>PMED<br>Version⁴ |                                |                             |     |
|----------------------------------------|---------------------|--------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|--------------------------------|-----------------------------|-----|
|                                        |                     | HMA Rutting                                                              |                                                      | ME Transfer<br>Function        | Yes, locally calibrated        | 2.3                         |     |
|                                        |                     | Unbound Aggre<br>Subgrade Ruttin                                         | egate Base and<br>ng                                 | ME Transfer<br>Function        | Yes, locally<br>calibrated     | 2.3                         |     |
|                                        |                     | Fatigue                                                                  | Alligator Area<br>Cracking;<br>Bottom-Up<br>Cracking | ME Transfer<br>Function        | Yes, locally calibrated        | 2.3                         |     |
| Flexible Pav<br>HMA Ov                 | ement and<br>erlays | Cracking                                                                 | Longitudinal<br>Cracking;<br>Top-Down<br>Cracking    | ME Transfer<br>Function        | No (see note 1)                |                             |     |
|                                        |                     | Thermal, Low-T<br>Cracking (Trans                                        | emperature<br>sverse)                                | ME Transfer<br>Function        | Yes, locally calibrated        | 2.3                         |     |
|                                        |                     | International Ro                                                         | oughness Index                                       | Regression<br>Equation         | Yes, locally calibrated        | 2.3                         |     |
|                                        |                     | Reflection Cracking; confined to HMA overlays                            |                                                      | Regression<br>Equation         | Yes, locally calibrated        | 2.3                         |     |
| Inverted Pavement                      |                     | Alligator Fatigue Cracking                                               |                                                      | ME Transfer<br>Function        | Yes, not locally<br>calibrated | 2.3                         |     |
|                                        |                     | HMA Rutting                                                              |                                                      | ME Transfer<br>Function        | Yes, not locally<br>calibrated | 2.3                         |     |
|                                        |                     | Unbound Aggre<br>Subgrade Ruttin                                         | egate Base and<br>ng                                 | ME Transfer<br>Function        | Yes, not locally<br>calibrated | 2.3                         |     |
|                                        |                     | Thermal, Low-T<br>Cracking (Trans                                        | emperature<br>sverse)                                | ME Transfer<br>Function        | Yes, locally<br>calibrated     | 2.3                         |     |
|                                        |                     | International Roughness Index                                            |                                                      | Regression<br>Equation         | Yes, not locally<br>calibrated | 2.3                         |     |
|                                        |                     | Fatigue Crackin<br>Cementitious La                                       | ig of<br>ayer                                        | ME Transfer<br>Function        | No (see note 2)                |                             |     |
| Semi-Rigid Pavement                    |                     | HMA Rutting, F<br>Cracking, and L<br>Temperature C<br>as for flexible pa | atigue<br>.ow-<br>racking; same<br>avements          | ME Transfer<br>Functions       | Yes, locally calibrated        | 2.3                         |     |
|                                        |                     | International Roughness Index                                            |                                                      | Regression<br>Equation         | No (see note 1)                |                             |     |
|                                        |                     | Faulting                                                                 |                                                      | ME Transfer<br>Function        | Yes, locally<br>calibrated     | 2.3                         |     |
|                                        | JPCP &<br>JPCP      | Fatigue Mid-Sla                                                          | b Cracking                                           | ME Transfer<br>Function        | Yes, locally calibrated        | 2.3                         |     |
| Rigid<br>Pavements                     | Overlays            | International Ro                                                         | oughness Index                                       | Regression<br>Equation         | Yes, locally<br>calibrated     | 2.3                         |     |
|                                        | CRCP &              | Punchouts                                                                |                                                      | ME Transfer<br>Function        | Yes, not locally<br>calibrated | 2.3                         |     |
|                                        | CRCP<br>Overlays    | CRCP<br>Overlays                                                         | International Ro                                     | oughness Index                 | Regression<br>Equation         | Yes, not locally calibrated | 2.3 |

 Table 2.1—Performance Indicators Predicted by Pavement ME Design

| Type of Pavement |                            | Performance Indicator | Type of<br>Model <sup>3</sup> | Recommended for<br>Use in Georgia | Calibrated<br>PMED<br>Version⁴ |
|------------------|----------------------------|-----------------------|-------------------------------|-----------------------------------|--------------------------------|
|                  | SJPCP<br>Overlay<br>of HMA | Longitudinal Cracking | ME Transfer<br>Function       | No (see note 1)                   |                                |

NOTES:

- 1. The predicted distress or performance indicator should not be used to make design decisions or change the design, until that transfer function has been locally or globally calibrated.
- 2. The current GDOT policy is to allow base alternates in South Georgia. Granular aggregate base (GAB) or soil cement are typical options. In these cases, designs will be done using GAB base and current GDOT policy on thicknesses, until the semi-rigid designs are calibrated.
- 3. "ME Transfer Function" refers to those functions listed in the MOP 2<sup>nd</sup>/3<sup>rd</sup> Edition (AASHTO, 2015).
- 4. Transfer functions are verified up to referenced PMED version only. Future validation is necessary for subsequent versions of the software due to changes in model.

## 2.2 PAVEMENT DESIGN STEPS USING PAVEMENT ME DESIGN SOFTWARE

Pavement design using the PMED software is an iterative process that can result in multiple acceptable designs. The specific design strategy for a project is selected external to the PMED software and is based on other factors, such as constructability, life cycle costs, and other policies established by GDOT. PMED, however, does include an optimization tool which defines the minimum thickness of an identified layer that satisfies all design criteria or threshold values entered by the user.

The design-analysis process includes the following six steps.



Figure 2.1—Conceptual Flow Chart of the MEPDG Three-Stage Design/Analysis Process for AASHTOWare PMED (AASHTO, 2015, 2020)

<u>Step 1:</u> Select a trial design strategy (new pavement or rehabilitation design). The pavement designer can use GDOT's current design procedure (guidelines and catalog) to determine the trial design cross section as a starting point. Establishing the layer structure for all pavements as discussed under Chapters 7 and 8 of this User Input Guide.

For ease of use within the initial implementation of the PMED Software, a set of baseline files was established and included in the GDOT MEPDG library. These files are listed and defined in Chapter 9 of this User Input Guide, because they are specific to the transfer function calibration coefficients to be used in Georgia. One of the appropriate files should be selected in setting up the trial design strategy.

<u>Step 2:</u> Select the appropriate performance indicator or distress criteria and design reliability level for the project. Performance criteria can include bottom-up fatigue (alligator) cracking, total rut depth, thermal transverse cracking, and roughness (as estimated using the International Roughness Index [IRI]) for flexible pavement design. Transverse fatigue (mid-slab) cracking, joint faulting, and IRI are the performance criteria for jointed plain concrete pavements (JPCP), while punchouts, crack width, and IRI are the criteria for continuously reinforced concrete pavement (CRCP) design. The performance indicator criteria are obtained from GDOT policies for triggering major rehabilitation or reconstruction and are included in Chapter 4 of this User Input Guide.

<u>Step 3:</u> Obtain all inputs for the trial design under consideration. This step can be a time consuming effort but is necessary for evaluating pavement designs using mechanistic-empirical analysis. The designer must determine the inputs based on their impact on pavement performance. The inputs required to run the software can be obtained using one of three levels of effort. The hierarchical input levels are defined in Section 2.4 of this chapter.

7

The input categories include general project information, traffic, climate, design features, and pavement structure. The latter chapters of this User Input Guide are focused on determining values for the inputs to the PMED software. Worksheets are included in Chapter 11 for documenting the inputs for a specific design problem. These worksheets are intended to facilitate use of the PMED software.

#### Step 4: Run PMED software and examine the inputs for engineering reasonableness.

The pavement design engineer should examine the input summary to ensure the inputs are correct and what the designer intended. This step should be completed before or after each run.

<u>Step 5:</u> Review and interpret the output in terms of the pavement performance and predicted reliability levels. The PMED software provides a summary of the predicted distresses and IRI of the pavement design as well as the reliability of the prediction for each distress. The user should assess if the trial design has met each of the performance indicator criteria at each of the chosen reliability levels for the project.

Figure 2.2 shows an example of the summary output for a new HMA pavement design. The target distress (performance criteria) and predicted distress at the specified reliability level are listed followed by the target reliability level and achieved reliability level for the target distress. If the "Achieved" reliability is equal to or greater than the "Target" reliability, the pavement structure passes. If the reverse is true, however, the pavement fails. If any key distress fails, the designer must alter the trial design to correct the problem. If further design changes are no longer feasible, available preventative maintenance practices may be considered as alternative solutions at the time of failure.

8

| Design I                                     | nputs                                   |                                      |           |                  |                                 |                  |                           |       |                          |       |                 |                      |
|----------------------------------------------|-----------------------------------------|--------------------------------------|-----------|------------------|---------------------------------|------------------|---------------------------|-------|--------------------------|-------|-----------------|----------------------|
| Design Life                                  | e: 20 years                             |                                      | Base co   | onstruction:     | July, 19                        | 93               | (                         | Clim  | nate Dat                 | а     | 30.783, -8      | 3.277                |
| Design Typ                                   | e: Flexible Pav                         | ement                                | Paveme    | ent construction | : August,                       | 199              | 3 3                       | Sou   | rces                     |       | 31.536, -8      | 4.194                |
|                                              |                                         |                                      | Traffic o | pening:          | Septem                          | ber,             | 1993                      |       |                          |       | 33.948, -8      | 3.327                |
|                                              | 2                                       |                                      |           |                  |                                 | -                |                           | -     | _                        | 2     | 34.272, -8      | 3.83                 |
| Design Str                                   | ructure                                 |                                      |           |                  |                                 |                  |                           |       |                          | Trat  | fic             |                      |
|                                              | Layer type Material Type                |                                      | Туре      | Thickness (in    | .): Volumetric at Construction: |                  |                           | ion:  | Age (year)               |       | Heavy Trucks    |                      |
| Lever210440                                  | Elevible Defau                          |                                      | halt      | 4.0              | Effecti                         | Effective binder |                           |       | Age (year)               |       | (cumulative)    |                      |
| Anarda Agree                                 | Пельне                                  | concrete                             |           | 4.0              | conter                          | nt (%            | 6)                        | 0.1   |                          | 1993  | 3 (initial)     | 170                  |
| Layer + Subsyste                             | NonStabilized                           | Crushed st                           | one       | 10.0             | Air voi                         | ds (             | %)                        | 6.0   |                          | 2003  | 3 (10 years)    | 310,463              |
| and a second                                 | Subgrade                                | A-2-7                                |           | 12.0             |                                 |                  |                           |       |                          | 2013  | 3 (20 years)    | 620,925              |
|                                              | Subgrade                                | A-6                                  |           | Semi-infinite    | 9                               |                  |                           |       |                          |       |                 |                      |
| Design C                                     | Outputs                                 |                                      |           |                  |                                 |                  |                           |       |                          |       |                 |                      |
| Distre ss                                    | Prediction Su                           | mmary                                |           |                  |                                 |                  |                           |       |                          |       |                 |                      |
|                                              |                                         |                                      |           |                  | Distress @ Specified            |                  |                           | Reli  | liability (%)            |       | Criterion       |                      |
|                                              | Distress Type                           |                                      |           |                  | Reliability                     |                  |                           |       | itenability ( <i>m</i> ) |       | Satisfied?      |                      |
|                                              |                                         |                                      |           |                  | Target                          |                  | Predicted                 |       | Target                   | t j   | Achieved        |                      |
| Terminal                                     | Terminal IRI (in./mile)                 |                                      |           |                  | 172.00                          |                  | 137.26                    |       | 90.00                    |       | 99.36           | Pass                 |
| Permanent deformation - total pavement (in.) |                                         |                                      |           | 5                | 0.50                            |                  | 0.32                      |       | 90.00                    |       | 100.00          | Pass                 |
| AC bottom-up fatigue cracking (percent)      |                                         |                                      |           | 25.00            |                                 | 3.46             | •                         | 50.00 |                          | 93.63 |                 |                      |
| AC bottor                                    | n-up laugue crac                        | king (percer                         | it)       |                  | 20.00                           |                  | Contraction of the second |       |                          |       |                 | Pass                 |
| AC bottor<br>AC therm                        | al cracking (ft/mi                      | king (percer<br>le)                  | it)       |                  | 1500.00                         |                  | 511.81                    |       | 50.00                    |       | 100.00          | Pass                 |
| AC bottor<br>AC therm<br>AC top-do           | al cracking (ft/mi<br>own fatigue crack | king (percer<br>le)<br>ing (ft/mile) | 11)       | ;                | 1500.00<br>2000.00              | •                | 511.81<br>4463.29         | •     | 50.00<br>90.00           | •     | 100.00<br>57.70 | Pass<br>Pass<br>Fail |

#### Figure 2.2—MEPDG Output Summary Sheet

The distress and IRI are output by graphs and tables at the end of each month over the design period, so the designer knows the time at which any of the design criteria are exceeded. In addition, materials properties and other factors are output on a month by month basis over the design period. The designer should examine the output material properties, climate summaries, traffic graphs, layer moduli, joint load transfer for JPCP, and other factors to assess their reasonableness. For flexible pavements, the output includes the HMA Dynamic Modulus ( $E^*$ ) and resilient modulus ( $M_r$ ) for unbound layers for each month over the design period, while for rigid pavements the slab elastic modulus and flexural strength, the base elastic modulus, and subgrade k-value are also provided for each month throughout the design period.

If the trial design has either input errors, material output anomalies, or has exceeded the performance criteria at the given level of reliability, revise the inputs/trial design and rerun the

program. Iterate until the performance criteria have been met or use the optimization tool to determine the minimum layer thickness for the design features selected. When the target reliability level has been achieved, the trial design may be considered a feasible design strategy.

<u>Step 6:</u> Revise the trial design, as needed. If any of the criteria has not been met (target reliability not achieved), determine how this deficiency can be remedied by altering the design and rerun the software until all criteria have been met at the target reliability level. While layer thickness is important, many other design factors also affect distress and IRI or smoothness. The designer must examine the performance prediction and determine which design feature to modify to improve performance (e.g., layer thickness, materials properties, layering combinations, geometric features, dowel diameter, and other inputs).

This User Input Guide identifies the design features commonly used in Georgia that should be considered to reduce specific performance indicators. Tables 2.2 through 2.4 provide some general guidelines for revising a design for which the calculated reliability of a specific distress is less than the target value. In addition, the MOP provides general guidance on revising the trial design when the performance criteria have not been met.

This "trial and error" process allows the pavement designer to essentially "build the pavement in his/her computer" prior to building it in the field to see if it will perform. If there is a problem with the design and materials for the given subgrade, climate, and traffic, it can be corrected, and an early failure avoided.

10

## 2.3 INPUT CATEGORIES

The inputs are grouped into five categories: (1) General Project Information (including the performance criteria), (2) Traffic, (3) Climate, (4) Design Features, and (5) Structure (including material properties). Each one of these is discussed separately in latter chapters. The GDOT PMED input library contains predefined project elements for traffic, climate, and material inputs. This Guide discusses the various categories of default inputs available in GDOT's PMED input library.

Some of the features listed in Tables 2.2 through 2.4 include layer properties that should not be changed when doing traditional designs. However, there are cases when those features can be revised to achieve an acceptable design—as an example, design-build type projects.

| Design                                       | s to the carry the besign of the distribution |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DISTRESS & IRI                               | Design Feature Revisions to Minimize or Eliminate Distress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Alligator Cracking<br>(Bottom Initiated)     | <ul> <li>Increase thickness of HMA layers.</li> <li>For thicker HMA layers (&gt; 5-inches), increase dynamic modulus by using stiffer or harder asphalt.</li> <li>For thinner HMA layers (&lt;3-inches), reduce dynamic modulus by using softer asphalt.</li> <li>Use a polymer modified asphalt in the lower HMA layer.</li> <li>Increase density, reduce air void of HMA base layer.</li> <li>Use an unbound granular aggregate base with a higher resilient modulus.</li> <li>Increase the thickness of the granular aggregate base layer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Thermal Transverse<br>Cracking               | <ul> <li>Use softer asphalt in the wearing surface or asphalt with a colder lower temperature grade.</li> <li>Reduce the creep compliance of the HMA surface mixture.</li> <li>Increase the indirect tensile strength of the HMA surface mixture.</li> <li>Increase the thickness of the HMA layers.</li> <li>Increase the asphalt content of the surface mixture.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rutting in HMA                               | <ul> <li>Increase the dynamic modulus of the HMA layers by using harder or stiffer asphalt.</li> <li>Use a polymer modified asphalt in the layers near the surface.</li> <li>Reduce the asphalt content in the HMA layers Increase the amount of crushed aggregate.</li> <li>Increase the amount of manufactured fines in the HMA mixtures.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rutting in Unbound<br>Layers and<br>Subgrade | <ul> <li>Increase the resilient modulus of the aggregate base; increase the density of the aggregate base.</li> <li>Stabilize the upper foundation layer for weak or collapsible soils.</li> <li>Use a thicker layer of a granular aggregate base layer.</li> <li>Place a layer of select embankment material with adequate compaction.</li> <li>Increase the HMA thickness.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IRI HMA                                      | <ul> <li>Reduce the predicted distresses that deteriorate smoothness.</li> <li>Require more stringent smoothness criteria and greater incentives (building the pavement smoother at the beginning).</li> <li>Improve the foundation; use thicker layers of non-frost susceptible materials</li> <li>Stabilize any expansive soils</li> <li>Place subsurface drainage system to remove ground water.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reflection Cracking                          | <ul> <li>Use an engineered interlayer to mitigate reflective cracks.</li> <li>Increase HMA overlay thickness.</li> <li>Increase the modulus of the HMA overlay.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

 Table 2.2—Example Design Features to Revise for Flexible Pavement and HMA Overlay

 Designs Not Meeting the Design Criteria or Target Reliability

| Distress & IRI                                                      | Modifications to Minimize or Eliminate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Joint Faulting                                                      | <ul> <li>Use dowels and increase their diameter as needed.</li> <li>Do not increase slab thickness to achieve faulting criteria.</li> <li>Increase erosion resistance of base (specific recommendations for each type of base).</li> <li>Minimize permanent curl/warp through curing procedures that eliminate built-in temperature gradient (e.g., construct pavement at night, or pave in later afternoon to avoid high solar radiation).</li> <li>Portland Cement Concrete (PCC) tied shoulder.</li> <li>Widened slab (by 1 foot maximum to 13 feet).</li> <li>Reduce joint spacing.</li> </ul> |
| Slab Cracking                                                       | <ul> <li>Increase slab thickness.</li> <li>Use PCC with lower coefficient of thermal expansion.</li> <li>Increase PCC strength (but not more than 10 percent).</li> <li>Reduce joint spacing.</li> <li>Minimize permanent curl/warp through curing procedures that eliminate built-in temperature gradient (e.g., construct pavement at night, or pave in later afternoon to avoid high solar radiation).</li> <li>PCC tied shoulder (separate placement or monolithic placement better).</li> <li>Widened slab (by 1 foot maximum to 13 feet).</li> </ul>                                         |
| Joint Crack Width<br>(to reduce joint<br>faulting)                  | <ul> <li>Decrease joint spacing.</li> <li>Reduce PCC coefficient of thermal expansion.</li> <li>Build JPCP to set at lower temperature (cool PCC, place at cooler temperatures).</li> <li>Reduce drying shrinkage of PCC (increase aggregate size, decrease water-cement ratio, decrease cement content).</li> </ul>                                                                                                                                                                                                                                                                               |
| Joint Load Transfer<br>Efficiency (LTE) to<br>reduce joint faulting | <ul> <li>Use mechanical load transfer devices (dowels).</li> <li>Increase diameter of dowels.</li> <li>Reduce joint crack width (see joint crack width recommendations).</li> <li>Increase the size of the larger aggregate particles.</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |
| IRI JPCP                                                            | <ul> <li>Reduce the predicted joint faulting and cracking distresses that will reduce roughness.</li> <li>Require more stringent smoothness criteria and greater incentives (e.g., reduce the initial as constructed IRI).</li> <li>Improve the foundation; use thicker layers of non-frost susceptible materials.</li> </ul>                                                                                                                                                                                                                                                                      |

# Table 2.3—Example Design Features to Revise for Jointed Plain Concrete Pavement and Overlay Designs Not Meeting the Design Criteria or Target Reliability

 Table 2.4—Example Design Features to Revise for Continuously Reinforced Concrete

 Pavement and Overlay Designs Not Meeting the Design Criteria or Target Reliability

| Distress & IRI            | Modifications to Minimize or Eliminate                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transverse Crack<br>width | <ul> <li>Build CRCP to set at lower temperature (cool PCC, place during cooler temperatures).</li> <li>Reduce drying shrinkage of PCC (increase aggregate size, decrease w/c ratio, decrease cement content).</li> <li>Increase percent longitudinal reinforcement.</li> <li>Reduce depth of reinforcement (minimum cover over steel: 3.5 in).</li> <li>Reduce PCC coefficient of thermal expansion (change larger aggregate).</li> </ul>                                                               |
| Transverse Crack<br>LTE   | <ul><li>Reduce crack width (see crack width recommendations).</li><li>Reduce depth of reinforcement.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                          |
| Punchouts                 | <ul> <li>Increase slab thickness.</li> <li>Increase percent longitudinal reinforcement.</li> <li>Reduce crack width over analysis period (see crack width recommendations).</li> <li>Increase PCC strength (maximum of 10 percent).</li> <li>Increase erosion resistance of base (specific recommendations for each type of base).</li> <li>Minimize permanent curl/warp through curing procedures that eliminate built-in temperature gradient.</li> <li>PCC tied shoulder or widened slab.</li> </ul> |
| IRI CRCP                  | <ul> <li>Reduce the predicted distresses that deteriorate smoothness.</li> <li>Require more stringent smoothness criteria and greater incentives (e.g., reduce the initial IRI at construction).</li> <li>Improve the foundation; use thicker layers of non-frost susceptible materials.</li> </ul>                                                                                                                                                                                                     |

## 2.4 HIERARCHICAL APPROACH FOR DETERMINING INPUTS

The hierarchical input approach provides the designer with a great deal of flexibility to obtain the inputs for a project based on the importance of the parameter and/or project and available resources. The hierarchical approach is employed with regard to traffic, materials, and condition of existing pavement inputs.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> The hierarchical approach for determining the inputs needed by the MEPDG is a feature not found in existing versions of the AASHTO Guide (*AASHTO 1986, 1993*) and other ME-based methods. Currently, input level has no effect other than accuracy of the input parameter (which is important for critical inputs), except for low-temperature thermal cracking of HMA wearing surfaces. For thermal cracking, the standard error of the transfer function is dependent on the input level (see Chapter 9 of this User Input Guide or Section 5 of the MOP Second Edition).

Three levels for most of the inputs are available to the designer. Table 2.5 defines each input level. One of three levels can be used to estimate the values for each input. However, the highest level of input available was used in calibrating the MEPDG transfer functions, both at the global and regional levels. Further discussion on this topic is found in Chapter 9.

For a given design project, inputs can be obtained using a mix of levels, such as dynamic modulus of HMA mixtures from Level 1, traffic load spectra from Level 3, and subgrade resilient modulus from Level 2. It is important to realize that no matter what input design levels are used, the computational algorithm for damage and distress is identical. The same models or transfer functions are used to predict distress and smoothness no matter what input levels are used.

| Input<br>Level | Definition of the Level                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | Input parameter based on site specific data and information. Level 1 represents the case when the user has the greatest knowledge about the input parameter for the specific project. This input level has the highest level of testing (data collection costs) for determining the input value. Input level 1 is recommended for projects having unusual site features and/or considering the use of new materials. |
| 2              | Regression equations are used to determine the input value. The data collection and testing for this input level is simpler and less costly. Input level 2 is recommended for use for routine pavement designs and standard materials.                                                                                                                                                                               |
| 3              | Level 3 inputs are based on "best-guessed" (default) values. The Level 3 inputs are<br>based on global or regional default values. This input level requires the minimum<br>amount of testing, and as such, results in the least knowledge about the input parameter<br>for the specific project. Input level 3 is recommended for use when the other input<br>levels are unavailable.                               |

 Table 2.5—Hierarchical Input Levels

# CHAPTER 3—GENERAL PROJECT INFORMATION

This chapter provides **guidance** on determining the input values for the General Project Information parameters for designing new and rehabilitated pavements in Georgia. Example screen shots are included at the end of this chapter for the general project information inputs.

## 3.1 DESIGN AND PAVEMENT TYPE STRATEGIES

The following sections outline general pavement design strategies for common pavement project types in Georgia. Table 3.1 provides a summary of the recommended calibration factors for each pavement design strategy listed in this section based on their inclusion in the local calibration process.

| Pavement<br>Type                | Pavement Design Strategy                                                                 | Recommended<br>Calibration Factors |
|---------------------------------|------------------------------------------------------------------------------------------|------------------------------------|
| Flexible<br>and HMA<br>Overlays | Conventional                                                                             | Local GDOT                         |
|                                 | Deep Strength & Full depth                                                               | Local GDOT                         |
|                                 | Semi-rigid                                                                               | Local GDOT                         |
|                                 | HMA Overlays of Conventional, Deep-strength, and Full-depth Flexible Pavements, and JPCP | Global                             |
|                                 | HMA Overlays of CRCP, Fractured JPCP and CRCP                                            | Global                             |
|                                 | HMA with soil cement                                                                     | Global                             |
|                                 | Inverted Pavements                                                                       | Global                             |
| Rigid and                       | JPCP                                                                                     | Local GDOT                         |
| PCC                             | CRCP                                                                                     | Global                             |
| Overlays                        | PCC Overlays (All Types)                                                                 | Global                             |

Table 3.1—Calibration Factors Recommended for New/Reconstructed Pavement Designs

NOTE: Local GDOT calibration factors values are located in Chapter 9.

## 3.1.1 New/Reconstructed Flexible Pavements and HMA Overlays

New and reconstructed HMA surfaced pavements, as well as HMA overlays, included in the PMED software are listed below in two groups: those verified using the Long Term Pavement Performance (LTPP) sites and non-LTPP pavement management sections and those not included in the verification-calibration process. If pavement design strategies are used that were not included in the local calibration process, the global calibration factors have to be used.<sup>2</sup> More detailed discussions on the types of pavement included in the local calibration and verification process are found in Chapter 9 and the final research report for this project (RP 11-17).

- Flexible pavements included in verification-local calibration process: GDOT calibration coefficients of the transfer functions are provided for all of the following flexible pavement types (see Chapter 9):
  - Conventional flexible pavements: Thin HMA layers (total HMA thickness less than 7 inches) and thick aggregate base layers (crushed gravel and soil-aggregate mixtures), greater than 10 inches in thickness with and without stabilized subgrades.
  - 2) Deep strength and full-depth flexible pavements: Full-depth and deep-strength were combined into one type of flexible pavement for the GDOT calibration study. Fulldepth is defined as HMA layers placed directly on the prepared embankment or on a stabilized subgrade. Deep-strength is defined as a thick HMA (a wearing surface, a binder layer, and a base layer exceeding 7 inches in thickness) placed over a granular aggregate base (GAB) material with or without a stabilized subgrade.

<sup>&</sup>lt;sup>2</sup> Fourteen baseline files (6 for new pavement designs and 8 for rehabilitation designs) are included in the GDOT database library, which can be used as a starting point in setting up the trial design structure. These baseline files contain the appropriate GDOT calibration coefficients for each transfer function, even for the design strategies used on an infrequent basis in Georgia. The ten baseline files are listed and defined in Chapter 9 of this User Input Guide.

- 3) Semi-rigid pavements: HMA mixtures placed over Cement Treated Base (CTB), Cement Aggregate Mixtures (CAM), or lime-fly ash stabilized base layers without an unbound aggregate layer. Semi-rigid pavements were excluded in the original calibration completed under NCHRP Projects 1-37A (ARA 2004 a,b,c,d) and 1-40D (NCHRP 2006). More recently, semi-rigid pavements were included during the 2018 global recalibration efforts. The global calibration factors should not be used for semi-rigid pavements until they have been verified using the GDOT semi-rigid pavement sections. Six semi-rigid pavement test sections were included in the local calibration study for GDOT. Most of the six projects had little alligator area cracking. Calibration factors are provided from these sections in Chapter 9 of this User Input Guide, but additional sections need to be included over time to confirm these calibration coefficients.
- 4) HMA overlays of all conventional, deep-strength, and full-depth flexible pavements, and JPCP.
- Flexible pavements not Included in verification-local calibration process: Calibration coefficients of the transfer functions and layer inputs were established and recommended from other agency studies for the following pavement types (see Chapter 9):
  - HMA overlays of CRC pavements, as well as HMA overlays of fractured JPCP and CRCP.
  - Inverted pavements which include an HMA surface over a GAB layer over a CTB or soil cement layer.

## 3.1.2 New/Reconstructed Rigid Pavements and PCC Overlays

New and reconstructed PCC surfaced pavements, as well as PCC overlays, that were included or excluded from the local calibration refinement process are listed below.<sup>3</sup>

- Rigid pavements included in verification-local calibration process: GDOT calibration coefficients of the transfer functions are provided for the following rigid pavement types (see Chapter 9):
  - Jointed Plain Concrete pavements (JPCP) include transverse joints spaced to accommodate temperature gradient and drying shrinkage stresses to minimize cracking. The joints include dowels to complement the aggregate interlock in providing load transfer. GDOT JPCP sections used in the calibration had a thickness range of 8 to 12 inches and were placed on HMA, cement stabilized, and granular aggregate bases. Joint spacing ranged from 15 to 30 feet.
- 2. **Rigid pavements not included in verification-local calibration process:** Calibration coefficients of the transfer functions and layer inputs were established and recommended from other agency studies (see Chapter 9):
  - CRC pavement includes PCC slab cast without transverse joints and containing longitudinal steel typically in the range of 0.5 – 0.8 percent of the cross-sectional area. The PCC surface develops transverse cracks and the design should ensure that the cracks remain tight and provide good load transfer during the service life of the pavement. A few CRCP sections were included in the verification-calibration process for GDOT, but the design features were generally confined to specific values.

<sup>&</sup>lt;sup>3</sup> Footnote 2 also applies to rigid pavements.

Calibration factors are provided from these sections, but additional sections need to be included over time to confirm the GDOT calibration coefficients (see Chapter 9).

2) PCC Overlays of all types of rigid and flexible pavements, including bonded PCC overlay of rigid pavements, unbonded PCC overlay of rigid pavements, and PCC overlay of flexible pavements. The same calibration factors used for new JPCP or CRCP can be used for these designs.

#### 3.1.3 Pavement Preservation and Preventive Maintenance

Pavement preservation treatments have shown to impact the structural performance and regional calibration factors when applied to the HMA surface early in the pavement's life (*Von Quintus and Moulthrop, 2007a and 2007b*). Most of the roadway segments included within the local calibration process for GDOT included the use of pavement preservation and/or preventive maintenance strategies, with the exception of the LTPP SPS projects. Thus, the local calibration values presented in Chapter 9 account for the effects of pavement preservation and preventive maintenance activities commonly used by GDOT.

If GDOT's preservation/maintenance policies change over time, the local calibration factors should be checked to validate whether there is a further reduction in the structural related distresses (bias between the predicted and observed values).

## 3.2 PROJECT FILE/NAME

The designer should use a simple but descriptive name for the analysis that can be easily identified in the projects files created by the PMED software. The designer should enter appropriate information to identify the project for pavement design purposes and future reference.

20

The amount of detail is up to the designer.<sup>4</sup> The information for this category of inputs has no impact on the analyses or distress predictions.

## 3.3 DESIGN LIFE

The design life of a newly reconstructed pavement is the time from opening to traffic until the pavement has structurally deteriorated to the point when significant rehabilitation/reconstruction is needed – exceeding one of the threshold values or design criteria (refer to step #8 of Section 4 in the Pavement ME Design software manual). The design life for all new pavement and rehabilitation designs is 20 years.

The software can handle design lives from 1 year (e.g., detour) to over 50 years. In fact, the software program has the ability to analyze 100-year designs. The design life for "long-life" pavements is defined as 35 to 50 years. However, the distress models have not been calibrated using sections with 35+ year service lives and therefore the user needs to exercise caution while interpreting results using design lives greater than 35 years.

## 3.4 BASE AND PAVEMENT CONSTRUCTION & TRAFFIC OPENING DATES

#### 3.4.1 New Construction

Construction completion and traffic opening dates are site construction features. These dates are keyed to the monthly traffic loadings and monthly climatic inputs which affect all layer moduli, including the subgrade modulus. The time reference is keyed to the first day of the month.

<sup>&</sup>lt;sup>4</sup> The name of the baseline files included in the GDOT database library can be used as an example (see Chapter 9).

In the case of rigid pavements, the construction month also determines the PCC set (or zerostress) temperature, strength, and elastic modulus. The set temperature provides the temperature baseline for the calculation of joint openings during the design life. The strength and elastic modulus vary monthly over the entire design life and are used in fatigue cracking and joint faulting predictions.

Different construction months can affect performance due to climatic conditions for that month. For larger projects, these dates are difficult to accurately define during design. The designer should select the most likely month for construction and opening the roadway to traffic. These dates are more important for rigid pavements than for flexible pavements, and more importantly, distresses are less sensitive to these dates than for other inputs except for designing temporary pavement structures for detours.

Table 3.2 provides the recommended months when the roadway is periodically opened to traffic as different segments of the project are completed or if the dates are unknown because construction scheduling and phasing have yet to be defined. Specifying any month is defined as the first day of that month. For large projects that extend into different paving seasons, each paving season can be evaluated separately.

| Design         | Pavement<br>Type | Base Construction<br>Month | Pavement<br>Construction Month | Traffic Opening<br>Month |
|----------------|------------------|----------------------------|--------------------------------|--------------------------|
| New            | Flexible         | May                        | June                           | July                     |
| Construction   | Rigid            | NA                         | June                           | August                   |
| Rehabilitation | HMA Overlay      | NA                         | June                           | June                     |
|                | PCC Overlay      | NA                         | June                           | August                   |

 Table 3.2—Construction and Traffic Opening Dates

NOTE: NA – Not applicable.
#### 3.4.2 Rehabilitation

The construction completion date of the existing pavement is required for all rehabilitation designs. This date should represent the time when pavement construction was completed. The predicted distresses and performance indicators are less sensitive to this date than for the construction and opening to traffic date for the overlay. Table 3.2 lists the recommended overlay and traffic opening months for rehabilitation projects when they are unknown.

Another issue related to rehabilitation design is when an overlay is being designed for an existing pavement that already has one or more overlays, because only one overlay can be simulated in the program. The following provides some guidance on determining the date of original construction.

- 1. If the existing overlay is thin or most of it is being milled as part of the rehabilitation strategy, the year the original pavement was opened to traffic should be entered.
- If a thick structural overlay exists (relative to the existing original pavement surface) and most of that overlay is left in place, the year the structural overlay was opened to traffic should be entered for the original pavement construction.
- 3. If the user is unsure what date to use, enter the date the original pavement was built or constructed, or just assume the pavement is 30 years old.

#### 3.5 SCREEN SHOTS FOR GENERAL INFORMATION

The following are screen shot examples that show the General Information for the rehabilitation of flexible such as Asphalt Concrete (AC) over AC and rigid pavements (AC over JPCP). The drop-down arrows are used to access or select different design and pavement types and other information for a specific project.

#### AC over AC and AC over JPCP



# **CHAPTER 4—PERFORMANCE CRITERIA**

Performance criteria are used to ensure a new pavement or rehabilitation design strategy performs satisfactorily over its design life. Performance of a pavement is measured in terms of the key distresses and smoothness, as measured by the IRI (refer to Table 2.1 in Chapter 2 of this User Input Guide and Section 5 of the Pavement ME Design software manual). The designer selects performance criteria or threshold limits that relate directly to the need for rehabilitation. Example screen shots showing the performance criteria are included at the end of this chapter.

#### 4.1 INITIAL INTERNATIONAL ROUGHNESS INDEX (IRI)

The initial IRI is the average IRI value measured after construction and is entered into the input screen for the performance criteria (refer to step #10 of Section 5 in the GDOT Pavement ME Design software manual). This initial value should be determined from construction records of previously placed HMA or PCC surfaces under comparable conditions—previous year construction records.

The IRI reported by GDOT is based on a half car simulation of the longitudinal profile data, while the IRI reported by LTPP and used in the development of the global IRI regression equation was based on a quarter car simulation. The values resulting from a quarter car simulation will be consistently higher in comparison to a half car simulation. As such, the GDOT initial IRI values cannot be entered directly in the PMED.

If this value is unknown for some conditions and/or pavement type, the values in Table 4.1 are recommended for use for different pavement types.

| Type of<br>Pavement | Type of Wearing Surface                                  | GDOT HRI Rating,<br>mm/km | Initial IRI Rating,<br>in./mi. |
|---------------------|----------------------------------------------------------|---------------------------|--------------------------------|
| Flexible &          | Open-Graded Friction<br>Course/Porous European Mix (PEM) | 750                       | 53                             |
| HMA                 | Stone Matrix Asphalt (SMA) Mixture                       | 825                       | 59                             |
| Overlays            | Dense-Graded HMA – State Routes                          | 900                       | 64                             |
|                     | Dense-Graded HMA – Urban Routes                          | 1175                      | 84                             |
| Digid               | JPCP                                                     | 900                       | 64                             |
| Rigia               | CRCP                                                     | 700                       | 50                             |

Table 4.1—Initial IRI Values

NOTE: GDOT HRI Rating is based on an analysis of the longitudinal profile data using a half car simulation, while the IRI Rating above is based on an analysis of the longitudinal profile data using a quarter car simulation.

#### 4.2 DISTRESS CRITERIA OR THRESHOLD VALUES

Performance criteria (or Analysis Parameters on the software window) are used to ensure that a pavement design will perform satisfactorily over its design life. Critical limits are selected and used by the designer to judge the adequacy of a design, which represent the condition of pavements that trigger some type of major rehabilitation or reconstruction activity. These criteria are similar in concept to the current AASHTO Design Guide (AASHTO, 1993) with the use of only the terminal serviceability index levels. These design criteria should not represent levels of distress or surface conditions that trigger some type of maintenance or non-structural repair.

Distress specific design criteria are a policy decision of GDOT and determined from information included in GDOT pavement management database (Pavement Condition Evaluation System [PACES] for flexible pavements and Concrete Pavement Condition Evaluation System [CPACES] for rigid pavements). The consequence of a project exceeding a performance criterion is requiring earlier than programmed major rehabilitation.

The distress or performance indicator values recommended for design at the design reliability are listed in Tables 4.2 to 4.5 by type of pavement, which are defined and measured in accordance

with the Distress Identification Manual (*FHWA, 2003*). The following paragraphs provide more discussion on the MEPDG design criteria relative to the GDOT values and policy decisions.

 Table 4.2— Flexible Pavement and HMA Overlay Design Criteria or Threshold Values

| Roadway Type (number of |                          | Performance Indicator                                         |                                         |                      |                                    |                 |  |  |  |
|-------------------------|--------------------------|---------------------------------------------------------------|-----------------------------------------|----------------------|------------------------------------|-----------------|--|--|--|
|                         |                          | Fatigue (Loa                                                  | nd) Cracking                            | Thormal              | Permanent<br>Deformation (Rutting) |                 |  |  |  |
| lanes<br>di             | are in both<br>rections) | AC Top-<br>Down Fatigue<br>Cracking <sup>A</sup> ,<br>ft/mile | AC Bottom-<br>Up Fatigue<br>Cracking, % | Cracking,<br>ft./mi. | Total<br>Pavement,<br>in.          | AC Only,<br>in. |  |  |  |
| Non-                    | 2-Lane State<br>Route    | 5,000                                                         | 25                                      | 1,500                | 0.40                               | 0.35            |  |  |  |
| Interstate              | 4-Lane<br>Roadway        | 5,000                                                         | 15                                      | 1,500                | 0.40                               | 0.35            |  |  |  |
| Interstate              | Rural and<br>Urban       | 5,000                                                         | 10                                      | 1,000                | 0.35                               | 0.30            |  |  |  |

Note A: A value of 5,000 ft./mi. is recommended so the program does not iterate on this value when using the optimization tool. The MOP does not recommend using the AC Top-down fatigue cracking model for design purposes. Future versions of PMED (v2.6+) has a new top-down cracking model.

| Boodway Type   | (number of lange are in both | Performance Indicator       |                                 |  |  |
|----------------|------------------------------|-----------------------------|---------------------------------|--|--|
| Koauway Type   | directions)                  | Mean Joint<br>Faulting, in. | Transverse<br>Cracking, % slabs |  |  |
| Non-Interstate | 2-Lane, State Route          | 0.20                        | 10.0                            |  |  |
|                | 4-Lane Roadway               | 0.20                        | 10.0                            |  |  |
| Interstate     | Rural and Urban              | 0.125                       | 10.0                            |  |  |

#### Table 4.3— Jointed Plain Concrete Pavement Design Criteria or Threshold Values

# Table 4.4— Continuously Reinforced Concrete Pavement Design Criteria or Threshold Values

| Roadway Type   | (number of lanes are in both | Performance Indicator |  |  |  |
|----------------|------------------------------|-----------------------|--|--|--|
|                | directions)                  | Punchouts, 1/mile     |  |  |  |
| Non Interatata | 2-Lane, State Route          | 10                    |  |  |  |
| Non-Interstate | 4-Lane Roadway               | 10                    |  |  |  |
| Interstate     | Rural and Urban              | 5                     |  |  |  |

| Roadway Type<br>(number of lanes<br>are in both<br>directions) |                          | Performance Indicator                                            |                                                  |                                 |                                                                         |                                       |                    |                                                              |                                                                               |  |
|----------------------------------------------------------------|--------------------------|------------------------------------------------------------------|--------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|---------------------------------------|--------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--|
|                                                                |                          | Fatigue (Load)<br>Cracking                                       |                                                  |                                 | :                                                                       | Permanent<br>Deformation<br>(Rutting) |                    | AC Total Cracking                                            |                                                                               |  |
|                                                                |                          | AC Top-<br>Down<br>Fatigue<br>Cracking <sup>A</sup> ,<br>ft/mile | AC<br>Bottom-<br>Up<br>Fatigue<br>Cracking,<br>% | Thermal<br>Cracking,<br>ft./mi. | Fatigue<br>Fracture<br>of Chem.<br>Stabilized<br>Layer <sup>B</sup> , % | Total<br>Pavement,<br>in.             | AC<br>Only,<br>in. | Fatigue<br>Cracking<br>(Bottom-<br>Up &<br>Reflective),<br>% | Transverse<br>Cracking<br>(Thermal &<br>Reflective) <sup>A</sup> ,<br>ft/mile |  |
| Non-<br>Interstate                                             | 2-Lane<br>State<br>Route | 5000                                                             | 25                                               | 1,500                           | 25                                                                      | 0.40                                  | 0.35               | 25                                                           | 5000                                                                          |  |
|                                                                | 4-Lane<br>Roadway        | 5000                                                             | 15                                               | 1,500                           | 25                                                                      | 0.40                                  | 0.35               | 15                                                           | 500                                                                           |  |
| Interstate                                                     | Rural<br>and<br>Urban    | 5000                                                             | 10                                               | 1,000                           | 25                                                                      | 0.40                                  | 0.35               | 10                                                           | 5000                                                                          |  |

Table 4.5— Composite and/or Semi-Rigid Pavement Design Criteria or Threshold Values

Note A: A value of 5,000 ft./mi. is recommended so the program does not iterate on this value when using the optimization tool

Note B: No information is available to provide recommendation for this value. 25% is currently the default value in PMED

#### 4.2.1 Terminal IRI Criterion

The terminal IRI for which the pavement is considered too rough and requires some type of rehabilitation is a required input. The IRI is predicted over time from the initial IRI and other predicted distresses and a site factor, which is explained in Chapter 5 of the MOP Second and Third Editions (AASHTO, 2015, 2020). Table 4.6 lists the terminal IRI ratings considered to be too rough, and the corresponding GDOT HRI Ratings for these criteria.

#### 4.2.2 Fatigue (Load-Related) Cracking Criterion—Flexible Pavements

Two types of load-related cracking in flexible pavement are included in the PMED Design software: alligator or bottom-up fatigue cracking in terms of percent of total lane area and longitudinal or top-down fatigue cracking in terms of feet per mile (refer to Table 2.1).

In the MEPDG design methodology, bottom-up fatigue (alligator) cracking is assumed to initiate at the bottom of all HMA layers, while top-down (longitudinal) fatigue cracking is assumed to initiate at the surface of the HMA wearing surface (top-down cracking). Alligator or bottom-up fatigue cracking should be used as the design criteria. The surface initiated—longitudinal cracking is not recommended for use as a design criterion at this time. GDOT should consider top down cracking model when the model is fully implemented in the PMED software. The designer should review the predicted longitudinal cracking values but not make any design changes based on the predicted length of longitudinal cracks.

Bottom-up fatigue cracking is the input for new construction design problems, while asphalt concrete (AC) total cracking (bottom-up plus reflective cracks) are the inputs for a rehabilitation design problem – HMA overlays. Reflective cracking calculated by the PMED software is the percentage of cracks in the existing wearing surface that reflect through the HMA overlay. Total cracking is the combined area of new bottom-up fatigue cracks in the HMA overlay plus any cracks in the existing HMA wearing surface that have reflected through the HMA overlay.

|                                                                |                   |                                         |                         | Pavement Type                   |                         |                                 |                         |                                 |                         |  |
|----------------------------------------------------------------|-------------------|-----------------------------------------|-------------------------|---------------------------------|-------------------------|---------------------------------|-------------------------|---------------------------------|-------------------------|--|
| Roadway Type<br>(number of lanes<br>are in both<br>directions) |                   | Flexible<br>Pavements &<br>HMA Overlays |                         | Semi-Rigid                      |                         | JPCP                            |                         | CRCP                            |                         |  |
|                                                                |                   | GDOT<br>HRI<br>Rating;<br>mm/km         | IRI<br>Rating;<br>in/mi | GDOT<br>HRI<br>Rating;<br>mm/km | IRI<br>Rating;<br>in/mi | GDOT<br>HRI<br>Rating;<br>mm/km | IRI<br>Rating;<br>in/mi | GDOT<br>HRI<br>Rating;<br>mm/km | IRI<br>Rating;<br>in/mi |  |
| Non-<br>Interstate<br>Route                                    | 2-Lane,<br>State  | 3090                                    | 220                     | 3230                            | 230                     | 3090                            | 220                     | 2460                            | 175                     |  |
|                                                                | 4-Lane<br>Roadway | 2460                                    | 175                     | 2460                            | 175                     | 2460                            | 175                     | 2460                            | 175                     |  |
| Interstate<br>Route                                            | Rural &<br>Urban  | 2460                                    | 175                     | 2460                            | 175                     | 2460                            | 175                     | 2460                            | 175                     |  |

Table 4.6—Terminal IRI and Corresponding GDOT HRI Ratings or Values

#### 4.2.3 Permanent Deformation (Rut Depth) Criterion—Flexible Pavements

The PMED software requires the entry of two rut depth (permanent deformation) design criteria for flexible pavements: HMA rutting and total rutting (refer to step #11 of Section 5 in the GDOT Pavement ME Design software manual). The design criteria should be the same for both the HMA rutting and total rutting (refer to Table 4.2).

#### 4.3 DESIGN RELIABILITY

The design reliability included in the MEPDG design methodology is similar, in concept only, to that in the AASHTO Design Guide (AASHTO, 1993). In PMED, a design may specify the desired level of reliability for each distress type and smoothness. Selected design reliability levels may vary by distress type and IRI or may remain constant for each. The level could be decided by weighing the consequence of reaching the terminal condition earlier than the desired design life. Since reliability can significantly impact the pavement predictions, engineering judgement and experience should always be used when selecting a particular value.

Design reliability is defined as the probability that the predicted distress will be less than the critical level over the design period. For example, if 10 projects were designed and constructed using PMED and the design reliability for rutting was set to 90 percent for each project, one of those projects, on average, would show more rutting than the threshold value at the end of the design period. In other words, the reliability level of 90 percent represents the probability (9 out of 10 projects) that the mean rutting for the project will not exceed the total rut depth criterion.

As a result, design reliability should be selected in balance with the desired performance criteria. The selection of a high design reliability level (e.g., 99 percent) and a very low performance criterion (3 percent alligator cracking) might make it almost impossible to build. At the present

30

time, the selection of a very high level of design reliability (e.g., greater than 96 percent) is not recommended because this may significantly increase construction costs.

Table 4.7 lists the reliability levels recommended for different types of roadways, except for reflection and thermal or transverse cracks. The design reliability for reflection and thermal cracks is 50 percent. The design reliability for reflection cracks is hard-coded in the PMED software as 50 percent and cannot be changed. The design reliability for thermal cracking is not hard-coded and needs to be entered by the user as 50 percent. If GDOT uses PMED software Version 2.5.5 or newer, Table 4.7 should be updated as total cracking (reflected and new) has its own reliability input.

The reason 50 percent reliability is recommended for thermal cracks is the mechanism for these cracks in Georgia is different from the mechanism included in the PMED software – thermal cracks caused by one or more cold temperature events. The PMED software does not predict any thermal cracks (caused by cold temperature events) for typical mixtures and climates in Georgia. Many roadway segments used in the calibration process, however, exhibited significant lengths of block cracking that are interpreted in the software as transverse cracking. Therefore, thermal cracks predicted in PMED are not believed to be a result of a low temperature event and instead are indications of block or transverse cracking in the roadway section. Bias was removed between the predicted thermal cracks and observed transverse cracks, but the standard error of the transfer function is large because the mechanisms for the predicted thermal cracks and observed transverse cracks, but the standard error of the transverse cracks are different. As such, the predicted mean amount of thermal cracks is suggested for use in determining the design features and binder grade of the HMA wearing surface. It should be noted that the PMED software V2.5.5 and newer version adjust the calibration factor for transverse cracking based on Mean Annual Air Temperature (MAAT). Therefore, the predicted amount of transverse cracks will be increased in warm climates.

31

|                                                                                     | Recommended Reliability Level, %                                                                             |                                                                   |  |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Type of Roadway                                                                     | All Performance Indicators,<br>except for AC Permanent<br>Deformation (Total Pavement)<br>& Thermal Cracking | AC Permanent Deformation<br>(Total Pavement) & Therma<br>Cracking |  |  |  |
| Interstate & Primary Arterials                                                      | 95                                                                                                           | 50                                                                |  |  |  |
| Minor Arterials & Major<br>Collectors                                               | 90                                                                                                           | 50                                                                |  |  |  |
| Low Volume (less than 500<br>trucks per day in both directions)<br>& Local Roadways | 75                                                                                                           | 50                                                                |  |  |  |

 Table 4.7—Reliability Level Recommended for Use with Pavement ME Design

# 4.4 SCREEN SHOTS FOR THE PERFORMANCE CRITERIA

This section of Chapter 4 includes screen shot examples that show the Performance Criteria inputs discussed within this chapter for the rehabilitation of flexible and rigid pavements. The same distresses are used for new flexible and rigid pavement designs, with the exception of reflection cracking. The specific pavement distresses are dependent on the pavement type selected for a specific project. The following are screen shots for the major pavement types (AC, JPCP, and CRCP).

#### AC over JPCP



| Performance Criteria                                 | Limit | Reliability |
|------------------------------------------------------|-------|-------------|
| Initial IRI (in./mile)                               | 64    |             |
| Terminal IRI (in./mile)                              | 220   | 90          |
| AC top-down fatigue cracking (ft/mile)               | 5000  | 90          |
| AC bottom-up fatigue cracking (percent)              | 25    | 90          |
| AC thermal cracking (ft/mile)                        | 1500  | 90          |
| Permanent deformation - total pavement (in.)         | 0.40  | 90          |
| Permanent deformation - AC only (in.)                | 0.40  | 90          |
| AC total cracking - bottom up + reflective (percent) | 25    | 50          |
| JPCP transverse cracking (percent slabs)             | 10    | 90          |

#### JPCP over JPCP (Unbonded)



| Performance Criteria                     | Limit | Reliability |
|------------------------------------------|-------|-------------|
| Initial IRI (în./mile)                   | 63    |             |
| Terminal IRI (in./mile)                  | 172   | 90          |
| JPCP transverse cracking (percent slabs) | 15    | 90          |
| Mean joint faulting (in.)                | 0.12  | 90          |

#### **CRCP over JPCP (Unbonded)**



CRCP punchouts (1/mile)

10

90

# **CHAPTER 5—TRAFFIC INPUTS**

This chapter summarizes the truck traffic inputs used for evaluating the adequacy of a design strategy. Example screen shots showing the traffic inputs are included at the end of this chapter.

The Traffic Analysis Branch of the Office of Planning can generate most of the traffic inputs for a specific project. For roadway segments where project specific traffic data are unavailable, the traffic weigh in motion (WIM) study determined and recommended traffic default values to be used for design (*Selezneva and Von Quintus, 2014*). The traffic default values are included in the GDOT ME Design Database. These traffic input libraries were established to save time in entering the traffic data.

Many other truck traffic input parameters are required for predicting the distresses of flexible and rigid pavements. Some of these inputs are difficult to determine and are unavailable within the GDOT truck traffic input library. Thus, the global default values are recommended for use in design and are defined and discussed within the NCHRP Project 1-37A reports (*ARA, 2004a*). These values were used in the regional validation/calibration refinement performed for Georgia, which are required for predicting distresses in both flexible and rigid pavements.

#### 5.1 AVERAGE ANNUAL DAILY TRUCK TRAFFIC (TRAFFIC VOLUME INPUTS)

The following traffic input parameters relate to traffic volume and are considered site specific and should be obtained from the Traffic Analysis Branch of the Office of Planning or the Office of Transportation Data within GDOT. If this information is unavailable, the following subsections provide the recommended default values (input level 3) to be used.

1. Two-way average annual daily truck traffic (AADTT): A project specific AADTT at the beginning of the design period is required for every design. AADTT is a weighted average

between weekday and weekend truck traffic. The designer should enter two-way and not one-way AADTT values. The Traffic Analysis Branch of the Office of Planning typically provides one-way traffic volumes, so those values need to be multiplied by 2 as an input in PMED.

- 2. Number of lanes: The number of lanes in the design direction.
- 3. Percent trucks in the design direction or directional distribution factor (DDF): The percentage of trucks in the design direction or directional distribution factor (DDF) is defined by the primary truck class for the roadway; usually vehicle class #9. If sufficient truck volume data is unavailable, a DDF value of 50 percent should be used.
- 4. Percent trucks in the design lane or lane distribution factor (LDF): The percentage of trucks in the design lane is defined by the primary truck class for the roadway; usually vehicle class #9. If sufficient truck volume data is unavailable, the values listed in Table 5.1 should be used.

| Number of Lanes (Two-Directions) | Lane Distribution Factor, % |
|----------------------------------|-----------------------------|
| 4                                | 90                          |
| 6                                | 80                          |
| 8                                | 70                          |
| 10                               | 60                          |

Table 5.1—Lane Distribution Factor Recommended for Use with Pavement ME Design

5. Operational speed: This input parameter is taken as the posted speed limit or the average truck speed of the heavier or larger trucks through the project segment. Lower speeds result in higher incremental damage values calculated by the MEPDG design methodology.

#### 5.2 TRAFFIC CAPACITY

This input factor (traffic capacity cap) does not have any impact on the predictions of the performance indicators. Thus, it is recommended that it not be enforced. This input is used to determine if the growth in traffic over time will exceed the capacity of the roadway.

### 5.3 AXLE CONFIGURATION

- Average axle width: The average distance between the outside edge of the tires of an axle; 8.5 feet, the PMED default value.
- Dual tire spacing: The average distance between the center of the two tires; 12 inches, the PMED default value.
- Tire pressure (hot inflation pressure): The average hot tire pressure; 120 psi, assumed for both single and dual tires, the PMED default value.
- Tandem axle spacing: The average distance between the two axles of a tandem axle; 51.6 inches, the PMED default value.
- 5. Tridem axle spacing: The average distance between the three axles of a tridem axle; 49.2 inches, the PMED default value.
- Quad axle spacing: The average distance between the four axles of a quad axle; 49.2 inches, the PMED default value.

#### 5.4 LATERAL WANDER

- Mean wheel location: The average distance from the outer edge of the wheel to the pavement edge marking; 18 inches, the PMED default value. This input is only required for a rigid pavement design analysis.
- 2. Truck traffic wander standard deviation: The standard deviation of lateral distribution of trucks traveling down the roadway; 10 inches, the PMED default value.
- 3. Design lane width: The width of the lane between the pavement lane designation markings and not the slab width. This input is a design feature and not a traffic input. It is included with the other traffic inputs because it has a significant impact on the stresses in the PCC slab based on the location of the wheel load relative to the edge of the pavement. The value is selected by the designer for the specific project. This input is only required for a rigid pavement design analysis.

### 5.5 WHEEL BASE

The average axle spacing and percentage of trucks within each spacing are only required for a rigid pavement design analysis. The following are the Georgia default values recommended for use:

- 1. Average axle spacing:
  - 1) 12 ft. for short axle spacing.
  - 2) 15 ft. for medium axle spacing.
  - 3) 18 ft. for long axle spacing.

- 2. Average percentage of trucks within each axle spacing:
  - 1) 17 percent for short axle spacing.
  - 2) 22 percent for medium axle spacing.
  - 3) 61 percent for long axle spacing.

#### 5.6 VEHICLE CLASS DISTRIBUTION AND GROWTH

1. Distribution Factors: Normalized vehicle (truck) class volume distribution: Determine the percentage of each vehicle or truck class within the mixed traffic (vehicle class 4 through 13 as defined by FHWA). These percentages represent the normalized truck volumes or truck volume distribution and are provided by the Traffic Analysis Branch of the Office of Planning.

Vehicle class volume data are readily available on just about all roadways in Georgia so the normalized vehicle class distribution can be obtained from the Traffic Analysis Branch of the Office of Planning for most pavement designs. In the few cases, where vehicle class volume data are unavailable or for a new roadway (new alignment), the following paragraphs can be used to estimate the normalized vehicle class volume distribution factors.

1) Three truck class categories can be used to select one of the seventeen truck traffic classification (TTC) groups included in the PMED software for a specific roadway segment: single unit trucks (vehicle class [VC] 5 to 7), combination trucks or single trailers (VC 8 to 10), and multi-trailer trucks (VC 11 to 13). Estimate the amount of trucks expected within these three truck class categories.

2) Table 5.2 summarizes the TTC groups for those roadways that were used in the local calibration process for Georgia. These TTC groups represent the median groups or values for the LTPP and non-LTPP sites used in the Georgia local calibration study, as well as from the traffic WIM study to identify the common TTC groups found on Georgia's roadways (Selezneva and Von Quintus, 2014).

As noted above, these TTC groups are recommended for use when actual truck traffic data are unavailable for use in design (refer to step #15.2 of Section 6 in the GDOT Pavement ME Design software manual).

|                   | Roadway Description                 | Type of Truck   | Percentage of<br>Trucks | Applicable<br>TTC Group |  |  |
|-------------------|-------------------------------------|-----------------|-------------------------|-------------------------|--|--|
|                   |                                     | Single Units    | 19.2                    | TTC-5                   |  |  |
|                   | Rural Interstate Highways, 4-Lane   | Single Trailers | 65.9                    |                         |  |  |
|                   |                                     | Multi-Trailers  | 14.9                    |                         |  |  |
| En al inda t      |                                     | Single Units    | 42.9                    |                         |  |  |
| Freight<br>Routes | Divided Highways, 4-Lane            | Single Trailers | 56.4                    | TTC-6                   |  |  |
|                   | Divided Highways                    | Multi-Trailers  | 1.7                     |                         |  |  |
|                   | Drin singl Dag duraus Allong        | Single Units    | 32.2                    | TTC 4                   |  |  |
|                   | Principal Roadways, 4-Lane          | Single Trailers | 65.0                    |                         |  |  |
|                   | Divided Highways                    | Multi-Trailers  | 2.8                     |                         |  |  |
|                   | Minor Arterials and Major Collector | Single Units    | 57.9                    |                         |  |  |
|                   | Routes (more than 1,000 AADTT       | Single Trailers | 39.9                    | TTC 12                  |  |  |
| Non-              | in both directions)                 | Multi-Trailers  | 2.2                     | 7                       |  |  |
| Poutos            | Local Two-Lane Routes with Low      | Single Units    | 73.9                    |                         |  |  |
| itoules           | Truck Volumes (less than 1,000      | Single Trailers | 25.1                    | TTC-14                  |  |  |
|                   | AADTT in both directions)           | Multi-Trailers  | 1.0                     |                         |  |  |

 Table 5.2—Median Truck Traffic Classification Groups Common to Georgia Roadways

NOTE: Single units include vehicle classes 4 to 7; single trailers include vehicle classes 8 to 10; and multitrailers include vehicle classes 11 to 13.

2. Growth rate of truck traffic: Estimate the increase in truck traffic over time. The growth of truck traffic is difficult to accurately estimate because there are many site and social-economic factors that cannot be predicted 20+ years into the future. In most cases, the growth rate for each vehicle class will be provided by the Traffic Analysis Branch of the Office of Planning for a particular roadway segment. The type and

magnitude of the growth rate can be entered in the PMED software for each truck class (refer to step #15 in Section 6 of the Pavement ME Design software manual).

The user has three options in choosing a traffic growth function, as listed below:

- No growth: Truck volume for a specific truck class remains the same throughout the design life.
- 2) Linear growth: Truck volume increases by a constant percentage of the base year traffic for the specific truck class.
- Compound growth: Truck volume increases by a constant percentage of the preceding year traffic for the specific truck class.

Negative Growth should not be used. If truck traffic is expected to decrease within the design life, use the average truck volume throughout the design life for that truck class and assume no growth.

#### 5.7 MONTHLY ADJUSTMENT

The monthly distribution factors (MDF) represent the relative amount of trucks traveling on the roadway segment during any month within a typical year. The MDF can be provided by the Traffic Analysis Branch of the Office of Planning.

Two sets of MDF were determined from the roadway segments with sufficient data and are defined as seasonally dependent and seasonally independent. Both sets of values are listed in Tables 5.3 and 5.4 and should be used when sufficient truck volume data are unavailable. The default MDF can be imported into the PMED software from the truck traffic data library established for GDOT. The values in Tables 5.3 and 5.4 are provided in this User Input Guide for checking

the values imported into the software. Table 5.3 includes the seasonally dependent values to be used for the non-freight routes, while Table 5.4 includes the seasonally independent values to be used for the freight routes. The Georgia freight routes are shown in Figure 5.1. All freight routes are generally along the interstate roadways, while the non-freight routes are along the non-interstate roadways. For any questions regarding freight routes, contact the Traffic Analysis Branch of the Office of Planning.

|           | Truck Classification |      |      |      |      |      |      |      |      |      |
|-----------|----------------------|------|------|------|------|------|------|------|------|------|
| Month     | 4                    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   |
| January   | 0.17                 | 0.11 | 0.79 | 1.6  | 0.22 | 0.22 | 1.94 | 0.16 | 0.51 | 1.12 |
| February  | 0.23                 | 0.06 | 0.74 | 1.53 | 0.28 | 0.39 | 2.06 | 0.39 | 0.67 | 0.65 |
| March     | 0.74                 | 0.56 | 0.91 | 0.89 | 0.91 | 0.84 | 1.42 | 0.74 | 0.86 | 0.74 |
| April     | 1.41                 | 1.26 | 1.08 | 0.6  | 1.29 | 1.34 | 0.65 | 1.28 | 1.07 | 0.81 |
| May       | 1.71                 | 1.65 | 1.08 | 0.12 | 1.51 | 1.45 | 0.36 | 1.61 | 1.26 | 0.57 |
| June      | 1.54                 | 1.97 | 1.08 | 0.12 | 1.53 | 1.5  | 0.24 | 1.72 | 1.32 | 0.57 |
| July      | 1.49                 | 2.14 | 1.02 | 0.12 | 1.4  | 1.4  | 0.19 | 1.46 | 1.07 | 0.65 |
| August    | 1.41                 | 1.95 | 1.19 | 0.12 | 1.52 | 1.63 | 0.25 | 1.63 | 1.3  | 0.96 |
| September | 1.46                 | 1.2  | 1.03 | 0.56 | 1.54 | 1.55 | 0.42 | 1.61 | 1.56 | 1.11 |
| October   | 1.29                 | 0.78 | 1.15 | 1.19 | 1.18 | 1.17 | 1    | 1.01 | 1.13 | 2.18 |
| November  | 0.33                 | 0.16 | 1.08 | 2.87 | 0.39 | 0.34 | 1.93 | 0.28 | 0.79 | 1.28 |
| December  | 0.22                 | 0.16 | 0.85 | 2.28 | 0.23 | 0.17 | 1.54 | 0.11 | 0.46 | 1.36 |

Table 5.3—Monthly Adjustment Factors for Non-Freight Routes; Seasonally Dependent

| Month     |      |           |      | Tru            | uck Clas | sification |      |      |      |      |
|-----------|------|-----------|------|----------------|----------|------------|------|------|------|------|
| WOITUI    | 4    | 5         | 6    | 7              | 8        | 9          | 10   | 11   | 12   | 13   |
| January   | 0.6  | 0.84      | 1.56 | 0.96           | 0.96     | 1.06       | 1.32 | 0.96 | 1.08 | 1.32 |
| February  | 0.72 | 0.96      | 1.2  | 0.96           | 1.08     | 1.06       | 1.2  | 0.96 | 1.14 | 0.96 |
| March     | 0.96 | 1.08      | 0.96 | 0.6            | 1.08     | 1.06       | 0.96 | 0.96 | 1.14 | 0.96 |
| April     | 1.44 | 1.2       | 0.96 | 0.48 1.08 0.96 |          | 0.96       | 0.96 | 1.08 | 0.84 |      |
| May       | 1.08 | 0.96      | 0.84 | 0.48           | 1.08     | 0.96       | 0.96 | 0.96 | 0.84 | 0.48 |
| June      | 1.08 | 1.08      | 0.72 | 0.6            | 1.08     | 1.08 0.96  |      | 1.08 | 0.96 | 0.6  |
| July      | 0.72 | 0.84      | 1.08 | 1.08           | 0.96     | 0.84       | 0.84 | 0.96 | 0.84 | 0.6  |
| August    | 0.84 | 0.72      | 0.96 | 1.32           | 1.08     | 0.96       | 0.84 | 1.08 | 0.96 | 0.84 |
| September | 0.84 | 0.84      | 0.84 | 1.32           | 0.84     | 0.96       | 0.96 | 1.08 | 0.96 | 0.84 |
| October   | 1.44 | 1.32 0.96 |      | 1.44           | 0.96     | 1.06       | 0.96 | 1.08 | 1.08 | 1.32 |
| November  | 1.32 | 1.2       | 0.96 | 1.44           | 0.96     | 1.06       | 0.96 | 0.96 | 1.08 | 1.44 |
| December  | 0.96 | 0.96      | 0.96 | 1.32           | 0.84     | 1.06       | 1.08 | 0.96 | 0.84 | 1.8  |

Table 5.4—Monthly Adjustment Factors for Freight Routes; Seasonally Independent

NOTE: Freight routes are along the interstate roadways, while non-freight routes are for the noninterstate routes. Contact the Traffic Analysis Branch of the Office of Planning to confirm input.





#### 5.8 HOURLY ADJUSTMENT

Hourly distribution factors (HDF) are only required for rigid pavement analyses; they are not used for predicting distresses of flexible pavements and HMA overlays of flexible pavements. The global default values included in the PMED software were found to be appropriate for Georgia interstates and principle arterials. Insufficient truck traffic volume data were unavailable to determine the HDF for the other roadway functional classification. Thus, it is recommended that the global default HDF be used for all roadways. Table 5.5 lists the global HDF for verifying the inputs. [NOTE: The hourly distribution factors input fields in the PMED software are only visible for rigid pavement designs.]

|                    | 0                                       |
|--------------------|-----------------------------------------|
| Time of Day        | Hourly Distribution of Truck Traffic, % |
| Midnight to 6 a.m. | 2.3                                     |
| 6 a.m. to 10 a.m.  | 5.0                                     |
| 10 a.m. to 4 p.m.  | 5.9                                     |
| 4 p.m. to 8 p.m.   | 4.6                                     |
| 8 p.m. to Midnight | 3.1                                     |

Table 5.5—Hourly Distribution Factors Recommended for Georgia

### 5.9 AXLES PER TRUCK CLASS

The average number of axles per truck class was determined from an analysis of the GDOT's WIM data as part of the traffic WIM study (*Selezneva and Von Quintus, 2014*). The default number of axles per truck class is listed in Table 5.6. These values are also included in the traffic library as part of the GDOT database. Table 5.6 is provided for checking the values imported into the PMED software for a specific project.

|             | N            | lumber of Axles | per Truck Class |               |
|-------------|--------------|-----------------|-----------------|---------------|
| Truck Class | Single Axles | Tandem Axles    | Tridem Axles    | Quad<br>Axles |
| 4           | 1.3          | 0.7             | 0               | 0             |
| 5           | 2.0          | 0               | 0               | 0             |
| 6           | 1.0          | 1.0             | 0               | 0             |
| 7           | 1.0          | 0.26            | 0.83            | 0             |
| 8           | 2.4          | 0.6             | 0               | 0             |
| 9           | 1.2          | 1.6             | 0               | 0             |
| 10          | 1.3          | 1.3             | 0.5             | 0.02          |
| 11          | 4.7          | 0.1             | 0.01            | 0             |
| 12          | 3.9          | 1.0             | 0.01            | 0             |
| 13          | 2.0          | 2.0             | 0.20            | 0.06          |

 Table 5.6—Default Values for the Number of Axles per Truck Class

#### 5.10 AXLE LOAD DISTRIBUTION FACTORS

Table 5.7 lists the files with the normalized axle load spectra (NALS) or distribution factors included in the GDOT database library. The default NALS were determined from the traffic WIM project (*Selezneva and Von Quintus, 2014*) for use in design to save time in entering the axle load distribution data. In addition, the Traffic Analysis Branch of the Office of Planning can provide these values from the permanent WIM sites as more sites are installed on Georgia's roadways.

Table 5.8 includes the tandem axle NALS factors for the heavier axle weights of vehicle class 9 to verify the values imported into the PMED software.

The three NALS classifications or files were derived from a limited number of WIM sites with relatively few over loaded trucks. If the designer is concerned with overloaded trucks along the route in question, the global NALS developed under NCHRP Project 1-37A should be selected for use. For roadways where the designer wants more accurate weight data, the portable weigh in motion (WIM) equipment can be used to measure the NALS over a short time period (minimum of 3 weeks) for the specific roadway in question.

| Axle Loading<br>Classification | Description of Normalized Axle Load Distribution                                                                                                              |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Default                        | Global default axle load distributions developed under<br>NCHRP 1-37A; not specific to GDOT roadways and<br>includes higher percentages of overloaded trucks. |
| GDOT_M                         | Non-Freight urban and rural routes with an AADTT less<br>than 1,000 in both directions (minor arterials, collectors and<br>state routes).                     |
| GDOT_H1                        | Non-Freight urban and rural routes with an AADTT greater than 1,000 in both directions (principle and non-interstate routes).                                 |
| GDOT_H2                        | Freight routes and rural and urban interstate roadways with an AADTT greater than 2,000 in both directions.                                                   |

Table 5.7—Normalized Axle Load Distribution Files included in the GDOT Database Library

| manzed Axie Load Distribution ractors for Venicle Class 5 Tandem Axies |
|------------------------------------------------------------------------|
|                                                                        |

| Axle Loading            |        | Tandem Axle Weight for Class 9 Trucks, lbs. |        |        |        |        |        |  |  |  |  |  |  |  |
|-------------------------|--------|---------------------------------------------|--------|--------|--------|--------|--------|--|--|--|--|--|--|--|
| Classification          | 30,000 | 32,000                                      | 34,000 | 36,000 | 38,000 | 40,000 | 42,000 |  |  |  |  |  |  |  |
| Global<br>Default, NALS | 6.13   | 6.28                                        | 5.67   | 4.46   | 3.16   | 2.13   | 1.41   |  |  |  |  |  |  |  |
| GDOT_M,<br>NALS         | 5.43   | 8.15                                        | 7.68   | 3.86   | 1.48   | 0.55   | 0.21   |  |  |  |  |  |  |  |
| GDOT_H1,<br>NALS        | 6.38   | 9.51                                        | 10.94  | 5.19   | 1.21   | 0.34   | 0.11   |  |  |  |  |  |  |  |
| GDOT_H2,<br>NALS        | 7.82   | 11.10                                       | 12.79  | 7.51   | 2.44   | 0.83   | 0.37   |  |  |  |  |  |  |  |

NALS – Normalized Axle Load Spectra (values in percentages).

# 5.11 SCREEN SHOTS FOR THE TRAFFIC INPUTS

This section of Chapter 5 includes screen shot examples for the different traffic inputs discussed within this chapter. The drop-down arrows are used to access or select specific information for the project.

# **Overall Screen Shot for Traffic**

| Explorer # ×                        | 13_5023_1:Project 13_5023_1:Tr                                              | raffic                                 |           |               |            |                  |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |             |              |          |                | <b>•</b> × |
|-------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|-----------|---------------|------------|------------------|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-------------|--------------|----------|----------------|------------|
| ⊡ Carl Projects                     |                                                                             |                                        | Vehicle C | lass Distr    | ibution an | Growth           |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Load      | d Default I | Distribution |          | Hourly Adj     | ustment    |
| Traffic                             | AADTT                                                                       | -                                      | Vehicle   | Vehicle Class |            | Distribution (%) |         | Growth Rate (%) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Growth Functio |           | 'n          |              | -        | Time of<br>Day | Percentage |
| Tandem Axle Distribution            | Number of lanes                                                             | <ul> <li>✓ 789</li> <li>✓ 1</li> </ul> | Class 4   |               | 12.9       |                  | 16.08   |                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ar             | -         | -00         | 3            |          | 12:00 am       | 23         |
| Tridem Axle Distribution            | Percent trucks in design direction                                          | 100 Warning: Value                     | Class 5   |               | 43.58      |                  | 16.08   |                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ar             | -         |             | ř.           |          | 1:00 pm        | 22         |
| Quad Axle Distribution              | Percent trucks in design lane                                               | 100                                    | Class 6   |               | 2.68       |                  | 16.08   |                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ar             | -         |             | Å            |          | 1.00 all       | 2.3        |
|                                     | Operational speed (mph)                                                     | ✓ 60                                   | Class 7   |               | 0.20       |                  | 10.00   |                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | -         | -00         | To la        | E        | 2:00 am        | 2.3        |
|                                     | Traffic Capacity                                                            |                                        | Class /   |               | 0.35       |                  | 10.00   |                 | une                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ar             |           | -100        |              |          | 3:00 am        | 2.3        |
| CRCPDesignProperty                  | Traffic Capacity Cap                                                        | ✓ Not enforced                         | Class 8   |               | 11.5       |                  | 16.08   |                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ar             | -         | 0 0         |              |          | 4:00 am        | 2.3        |
| Pavement Structure                  | Axle Configuration                                                          | C 0 0 0                                | Class 9   |               | 25.62      |                  | 16.08   |                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ar             | -         |             | B            |          | 5:00 am        | 23         |
|                                     | Dual tire spacing (in )                                                     | ▼ 0.5<br>▼ 12 E                        | Class 10  |               | 0.61       |                  | 16.08   |                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ar             | -         |             | B            |          | 0.00           | 5          |
|                                     | Tire pressure (psi)                                                         | 120                                    | Clase 11  |               | 1.66       |                  | 16.08   |                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ar             | -         |             | R.           |          | 0.00 am        | 5          |
|                                     | Tandem axle spacing (in.)                                                   | 51.6                                   | Cidaa 11  |               | 1.00       |                  | 10.00   |                 | Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Circle Ci |                |           | 6 66        |              |          | 7:00 am        | 5          |
|                                     | Tridem axle spacing (in.)                                                   | <b>49.2</b>                            | Class 12  |               | 0.4        |                  | 16.08   |                 | une                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ar             |           | بمالم ما    | E            | -        | 8:00 am        | 5          |
| Layer 6 Subgrade : A-3              | Quad axle spacing (in.)                                                     | ✓ 49.2                                 | Monthly A | djustment     |            |                  |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Impo      | ort Month   | lv Adjustme  | en       | 9:00 am        | 5          |
| Backcalculation                     | Lateral Wander                                                              |                                        | ·         |               |            |                  |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Conserved |             |              |          | 10:00 am       | 5.9        |
| Project Specific Calibration Factor | Mean wheel location (in.)                                                   | 18                                     | Month     | Class 4       | Class 5    | Class 6          | Class 7 | Class 8         | Class 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Class          | Class     | Class       | Class        | ^        | TU.UU dili     | 3.3        |
| Sensitivity                         | I raffic wander standard deviation (in.)                                    | 10                                     |           |               |            |                  |         | 1000000         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10             | 11        | 12          | 13           |          | 11:00 am       | 5.9        |
| PDE Output Papat                    | Design lane width (ft)                                                      | V 12                                   | January   | 0.6           | 0.6        | 0.72             | 0.84    | 0.6             | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72           | 0.72      | 0.6         | 0.84         |          | 12:00 pm       | 5.9        |
| Prove Output Report                 | Average encoded of short average (#)                                        | 12                                     | February  | 0.84          | 0.6        | 0.84             | 1.32    | 0.6             | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.08           | 0.6       | 0.48        | 1.32         |          | 1:00 pm        | 5.9        |
| Multiple Project Summary            | Average spacing of short axies (it)<br>Average spacing of medium axies (it) | 12                                     | March     | 1.56          | 12         | 0.96             | 1.56    | 0.96            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96           | 0.72      | 0.72        | 1 44         |          | 2.00           | 5.0        |
| Batch Run                           | Average spacing of long axles (ft)                                          | 18                                     | A de      | 1.00          | 0.000      | 0.00             | 0.70    | 4.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00           | 0.72      | 0.72        | 0.00         | -        | 2:00 pm        | 0.0        |
| Tools                               | Percent trucks with short axles                                             | 17                                     | 1         | 1147          | 1.00       | 111.96           |         | III             | 11.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1116           | 10.6      |             | 1 4          |          | 3:00 pm        | 5.9        |
| ME Design Calibration Factors       | Percent trucks with medium axles                                            | 22                                     | 2.2.2     |               |            |                  |         | 11/201          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |             |              | -        | 4:00 pm        | 4.6        |
|                                     | Percent trucks with long axles                                              | ✓ 61                                   | Axles Per | ruck          |            |                  |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |             |              | _        | 5:00 pm        | 46         |
|                                     | Identifiers                                                                 |                                        | Vehicle   | Class         | Single     |                  | Tand    | em              | Trid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | em             | (         | Quad        |              | ^        | 0.00 pm        | 1.0        |
|                                     | Display name/identifier                                                     | Default Traffic                        | Class 4   |               | 1.23       |                  | 0.77    |                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 0         | Ň.          |              |          | 6:00 pm        | 4.6        |
|                                     | Description of object                                                       | Default Traffic File                   | Class 5   |               | 2.04       |                  | 0       |                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 0         | i.          |              | =        | 7:00 pm        | 4.6        |
|                                     | Approver                                                                    | 1 (1 (2011                             | 0.0       |               | 1.00       |                  | 0.01    |                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 0         | 63<br>61    |              |          | 8:00 pm        | 3.1        |
|                                     | Percent trucks in design direction                                          |                                        | Class 6   |               | 1.09       |                  | 0.91    |                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | U         | 22          |              |          | 9:00 pm        | 31         |
|                                     | Percentage of trucks in the design direction                                | 15                                     | Class 7   |               | 1.5        |                  | 0.24    |                 | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 0         | R.          |              |          | 10.00          | 2.1        |
|                                     | Minimum:40                                                                  |                                        | Class 8   |               | 2.72       |                  | 0.28    |                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 0         | ř.          |              | 10:00 pm | 3.1            |            |
|                                     |                                                                             |                                        |           |               |            |                  | -       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -         |             |              |          | 11.00          | 21         |

#### Vehicle Class Distribution and Growth

| Vehicle Class Distrib | ution and Growth |                 |                | Load Default Distribution |
|-----------------------|------------------|-----------------|----------------|---------------------------|
| Vehicle Class         | Distribution (%) | Growth Rate (%) | Growth Functio | n                         |
| Class 4               | 12.9             | 3.5             | Linear         |                           |
| Class 5               | 43.58            | 3.5             | Linear         | - LE                      |
| Class 6               | 2.68             | 3.5             | Linear         |                           |
| Class 7               | 0.4              | 3.5             | Linear         | - L.                      |
| Class 8               | 11.5             | 3.5             | Linear         |                           |
| Class 9               | 25.62            | 3.5             | Linear         |                           |
| Class 10              | 0.61             | 3.5             | Linear         |                           |
| Class 11              | 1.66             | 3.5             | Linear         |                           |
| Class 12              | 0.4              | 3.5             | Linear         |                           |
| Class 13              | 0.65             | 3.5             | Linear         |                           |
| Total                 | 100              |                 |                | ▼                         |

# Monthly Adjustments

| Monthly Adj | ustment |         |         |         |         |          |          | In       | nport Monthl | y Adjustmer |
|-------------|---------|---------|---------|---------|---------|----------|----------|----------|--------------|-------------|
| Month       | Class 4 | Class 5 | Class 6 | Class 7 | Class 8 | Class 9  | Class 10 | Class 11 | Class 12     | Class 13    |
| January     | 0.6     | 0.6     | 0.72    | 0.84    | 0.6     | 0.72     | 0.72     | 0.72     | 0.6          | 0.84        |
| February    | 0.84    | 0.6     | 0.84    | 1.32    | 0.6     | 0.6      | 1.08     | 0.6      | 0.48         | 1.32        |
| March       | 1.56    | 1.2     | 0.96    | 1.56    | 0.96    | 0.72     | 0.96     | 0.72     | 0.72         | 1.44        |
| April       | 1.92    | 1.44    | 0.96    | 0.72    | 1.08    | 0.96     | 0.6      | 0.6      | 0.72         | 0.36        |
| May         | 1.68    | 1.08    | 0.84    | 0.6     | 0.96    | 0.96     | 0.6      | 0.84     | 0.6          | 0.24        |
| June        | 0.96    | 0.72    | 0.84    | 1.2     | 0.72    | 0.72     | 0.84     | 0.72     | 0.72         | 0.84        |
| July        | 0.84    | 1.2     | 1.56    | 2.28    | 0.96    | 0.72 2.0 |          | 0.84     | 0.84         | 3           |
| August      | 0.6     | 1.08    | 1.2     | 0.96    | 1.32    | 1.32     | 1.2      | 1.32     | 1.56         | 1.2         |
| September   | 0.36    | 0.96    | 1.08    | 0.72    | 1.32    | 1.44     | 1.2      | 1.44     | 1.68         | 0.84        |
| October     | 0.6     | 0.84    | 1.08    | 0.84    | 1.2     | 1.32     | 1.08     | 1.44     | 1.56         | 0.96        |
| November    | 1.08    | 1.08    | 0.84    | 0.24    | 1.08    | 1.2      | 0.6      | 1.32     | 1.2          | 0.24        |
| December    | 0.96    | 1.2     | 1.08    | 0.72    | 1.2     | 1.32     | 1.08     | 1.44     | 1.32         | 0.72        |

# Number of Axles Per Vehicle (Truck) Class

| Axles Per Truck |        |        |        |      |  |
|-----------------|--------|--------|--------|------|--|
| Vehicle Class   | Single | Tandem | Tridem | Quad |  |
| Class 4         | 1.23   | 0.77   | 0      | 0    |  |
| Class 5         | 2.04   | 0      | 0      | 0    |  |
| Class 6         | 1.09   | 0.91   | 0      | 0    |  |
| Class 7         | 1.5    | 0.24   | 0.36   | 0    |  |
| Class 8         | 2.72   | 0.28   | 0      | 0    |  |
| Class 9         | 1.15   | 1.92   | 0      | 0    |  |
| Class 10        | 1.9    | 1.8    | 0      | 0.1  |  |
| Class 11        | 5      | 0      | 0      | 0    |  |
| Class 12        | 4.37   | 0.63   | 0      | 0    |  |
| Class 13        | 2.15   | 2.13   | 0.35   | 0    |  |

#### AADTT, Traffic Capacity, Axle Configuration, Lateral Wander, and Wheelbase

Note: As stated previously, average axle width, mean wheel location, design lane width, and all wheelbase inputs are only used for the rigid pavement analyses. These inputs parameters are not used in the flexible pavement analyses.

| / | 13_5023_1:Project / 13_5023_1:Trat      | ffic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |   |
|---|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
| • | ] <b>2</b> ↓   155                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |   |
| 4 | AADTT                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | - |
|   | Two-way AADTT                           | <ul> <li>Image: A set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the</li></ul>  | 789               |   |
|   | Number of lanes                         | <ul> <li>Image: A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s</li></ul> | 1                 |   |
|   | Percent trucks in design direction      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 Warning: Valu |   |
|   | Percent trucks in design lane           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100               |   |
|   | Operational speed (mph)                 | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                |   |
| 4 | Traffic Capacity                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |   |
|   | Traffic Capacity Cap                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not enforced      |   |
| 4 | Axle Configuration                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |   |
|   | Average axle width (ft)                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.5               | = |
|   | Dual tire spacing (in.)                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                |   |
|   | Tire pressure (psi)                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120               |   |
|   | Tandem axle spacing (in.)               | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.6              |   |
|   | Tridem axle spacing (in.)               | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.2              |   |
|   | Quad axle spacing (in.)                 | <ul> <li>Image: A start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of</li></ul>  | 49.2              |   |
| 4 | Lateral Wander                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |   |
|   | Mean wheel location (in.)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                |   |
|   | Traffic wander standard deviation (in.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                |   |
|   | Design lane width (ft)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                |   |
| 4 | Wheelbase                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |   |
|   | Average spacing of short axles (ft)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                |   |
|   | Average spacing of medium axles (ft)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                |   |
|   | Average spacing of long axles (ft)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                |   |
|   | Percent trucks with short axles         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                |   |
|   | Percent trucks with medium axles        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                |   |
|   | Percent trucks with long axles          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61                |   |
| 4 | Identifiers                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |   |

#### Normalized Axle Load Distribution

| Explorer 🛛 🗘 🗙                                                                     | 13_50    | 23_1:Proje | ct 13_5 | 023_1:Traff | ic* 13  | _5023_1:Sing | le 13_5  | 023_1:Tand | em 13_5  | 023_1:Trider | n 13_50. | 23_1:Quad | ]        |          |          |          |          | <del>▼</del> × |
|------------------------------------------------------------------------------------|----------|------------|---------|-------------|---------|--------------|----------|------------|----------|--------------|----------|-----------|----------|----------|----------|----------|----------|----------------|
| E- Projects                                                                        | Month    | Class      | Total   | 6000        | 8000    | 10000        | 12000    | 14000      | 16000    | 18000        | 20000    | 22000     | 24000    | 26000    | 28000    | 30000    | 32000    | 34000 ^        |
| Traffic                                                                            | anuary   | 4          | 99.9999 | 0.45194     | 0.07171 | 0.306412     | 0.539738 | 1.078708   | 1.359783 | 2.186252     | 3.135169 | 5.521232  | 7.192294 | 10.19241 | 14.23228 | 18.97321 | 19.04102 | 11.12356       |
| Single Avle Distribution     Tandem Avle Distribution     Tridem Avle Distribution | anuary   | 5          | 100     | 52.6594     | 30.8764 | 13.37019     | 2.545854 | 0.150801   | 0.058175 | 0.044593     | 0.039238 | 0.038436  | 0.047623 | 0.075853 | 0.057236 | 0.023489 | 0.010109 | 0.002449       |
|                                                                                    | anuary   | 6          | 100     | 0.81435     | 9.83058 | 21.35143     | 9.506682 | 6.881563   | 7.219034 | 5.740425     | 4.718521 | 4.699420  | 4.686144 | 4.724596 | 4.515553 | 3.876383 | 3.320864 | 2.667267 🗄     |
| Quad Axle Distribution                                                             | anuary   | 7          | 100     | 0.03408     | 2.09724 | 3.993973     | 3.442440 | 5.571129   | 6.705329 | 3.620778     | 1.556201 | 2.817564  | 2.758923 | 3.609857 | 5.551072 | 9.430278 | 5.947589 | 7.804637       |
| Climate                                                                            | January  | 8          | 99.9999 | 3.39491     | 2.60159 | 8.286679     | 17.04756 | 17.86891   | 14.70965 | 10.38685     | 7.863968 | 5.987617  | 4.121883 | 2.752606 | 1.734724 | 1.005115 | 0.678346 | 0.536977       |
| CRCPDesignProperty                                                                 | January  | 9          | 99.9999 | 0.16331     | 1.21669 | 4.047415     | 9.012149 | 9.860880   | 8.061871 | 6.588147     | 6.233436 | 5.929530  | 5.265525 | 4.812084 | 5.056886 | 6.384421 | 9.506351 | 10.94001       |
| Pavement Structure                                                                 | January  | 10         | 100     | 0.20161     | 0.38589 | 1.703794     | 5.256000 | 6.715866   | 6.581072 | 7.517206     | 7.046927 | 6.111697  | 5.949348 | 7.680201 | 9.406070 | 8.585663 | 7.250343 | 5.295033       |
|                                                                                    | January  | 11         | 0       | 0           | 0       | 0            | 0        | 0          | 0        | 0            | 0        | 0         | 0        | 0        | 0        | 0        | 0        | 0              |
| Layer 3 Sandwich/Fractur                                                           | January  | 12         | 100     | 0.05958     | 0.22317 | 1.254160     | 5.585659 | 8.845735   | 11.92588 | 19.00924     | 23.21623 | 16.35850  | 7.974876 | 3.690878 | 1.053877 | 0.342254 | 0.097300 | 0.090743       |
|                                                                                    | January  | 13         | 100     | 1.34315     | 1.02113 | 1.650827     | 2.988982 | 4.172681   | 4.542580 | 5.884351     | 6.964432 | 7.270262  | 5.988421 | 3.903647 | 4.994671 | 4.806986 | 5.627477 | 6.438434       |
| Layer 5 Subgrade : A-3                                                             | February | 4          | 99.9999 | 0.45194     | 0.07171 | 0.306412     | 0.539738 | 1.078708   | 1.359783 | 2.186252     | 3.135169 | 5.521232  | 7.192294 | 10.19241 | 14.23228 | 18.97321 | 19.04102 | 11.12356       |
|                                                                                    | February | 5          | 100     | 52.6594     | 30.8764 | 13.37019     | 2.545854 | 0.150801   | 0.058175 | 0.044593     | 0.039238 | 0.038436  | 0.047623 | 0.075853 | 0.057236 | 0.023489 | 0.010109 | 0.002449       |
| Project Specific Calibration Fail                                                  | February | 6          | 100     | 0.81435     | 9.83058 | 21.35143     | 9.506682 | 6.881563   | 7.219034 | 5.740425     | 4.718521 | 4.699420  | 4.686144 | 4.724596 | 4.515553 | 3.876383 | 3.320864 | 2.667267       |
| Optimization                                                                       | February | 7          | 100     | 0.03408     | 2.09724 | 3.993973     | 3.442440 | 5.571129   | 6.705329 | 3.620778     | 1.556201 | 2.817564  | 2.758923 | 3.609857 | 5.551072 | 9.430278 | 5.947589 | 7.804637       |
| PDF Output Report                                                                  | February | 8          | 99.9999 | 3.39491     | 2.60159 | 8.286679     | 17.04756 | 17.86891   | 14.70965 | 10.38685     | 7.863968 | 5.987617  | 4.121883 | 2.752606 | 1.734724 | 1.005115 | 0.678346 | 0.536977       |
| Excel Output Report                                                                | February | 9          | 99.9999 | 0.16331     | 1.21669 | 4.047415     | 9.012149 | 9.860880   | 8.061871 | 6.588147     | 6.233436 | 5.929530  | 5.265525 | 4.812084 | 5.056886 | 6.384421 | 9.506351 | 10.94001       |
| Batch Run                                                                          | February | 10         | 100     | 0.20161     | 0.38589 | 1.703794     | 5.256000 | 6.715866   | 6.581072 | 7.517206     | 7.046927 | 6.111697  | 5.949348 | 7.680201 | 9.406070 | 8.585663 | 7.250343 | 5.295033       |
| Tools                                                                              | February | 11         | 0       | 0           | 0       | 0            | 0        | 0          | 0        | 0            | 0        | 0         | 0        | 0        | 0        | 0        | 0        | 0              |
| E- ME Design Calibration Factors                                                   | February | 12         | 100     | 0.05958     | 0.22317 | 1.254160     | 5.585659 | 8.845735   | 11.92588 | 19.00924     | 23.21623 | 16.35850  | 7.974876 | 3.690878 | 1.053877 | 0.342254 | 0.097300 | 0.090743       |
|                                                                                    | February | 13         | 100     | 1.34315     | 1.02113 | 1.650827     | 2.988982 | 4.172681   | 4.542580 | 5.884351     | 6.964432 | 7.270262  | 5.988421 | 3.903647 | 4.994671 | 4.806986 | 5.627477 | 6.438434       |
|                                                                                    | March    | 4          | 99.9999 | 0.45194     | 0.07171 | 0.306412     | 0.539738 | 1.078708   | 1.359783 | 2.186252     | 3.135169 | 5.521232  | 7.192294 | 10.19241 | 14.23228 | 18.97321 | 19.04102 | 11.12356       |
|                                                                                    | March    | 5          | 100     | 52.6594     | 30.8764 | 13.37019     | 2.545854 | 0.150801   | 0.058175 | 0.044593     | 0.039238 | 0.038436  | 0.047623 | 0.075853 | 0.057236 | 0.023489 | 0.010109 | 0.002449       |
|                                                                                    | March    | 6          | 100     | 0.81435     | 9.83058 | 21.35143     | 9.506682 | 6.881563   | 7.219034 | 5.740425     | 4.718521 | 4.699420  | 4.686144 | 4.724596 | 4.515553 | 3.876383 | 3.320864 | 2.667267       |
|                                                                                    | March    | 7          | 100     | 0.03408     | 2.09724 | 3.993973     | 3.442440 | 5.571129   | 6.705329 | 3.620778     | 1.556201 | 2.817564  | 2.758923 | 3.609857 | 5.551072 | 9.430278 | 5.947589 | 7.804637.      |
|                                                                                    |          |            | 00.0000 | 0.00401     | 0.00100 | 0.000070     | 17 04700 | 17.00001   | 14 70005 | 10 00005     | 7.00000  | C 007017  | 4 101000 | 2 752000 | 1 704704 | 1.005115 | 0.070040 | - FROMPS -     |

**Hourly Adjustment** Note: as previously stated, hourly adjustments are only used in the rigid pavement analyses and are not used in the flexible pavement analyses.

| Time of  | Percentage |   |
|----------|------------|---|
| 1:00 am  | 2.3        |   |
| 2:00 am  | 2.3        |   |
| 3:00 am  | 2.3        |   |
| 4:00 am  | 2.3        |   |
| 5:00 am  | 2.3        |   |
| 6:00 am  | 5          |   |
| 7:00 am  | 5          |   |
| 8:00 am  | 5          |   |
| 9:00 am  | 5          |   |
| 10:00 am | 5.9        |   |
| 11:00 am | 5.9        |   |
| 12:00 pm | 5.9        | - |
| 1:00 pm  | 5.9        | - |
| 2:00 pm  | 5.9        |   |
| 3:00 pm  | 5.9        |   |
| 4:00 pm  | 4.6        |   |
| 5:00 pm  | 4.6        |   |
| 6:00 pm  | 4.6        |   |
| 7:00 pm  | 4.6        |   |
| 8:00 pm  | 3.1        |   |
| 9:00 pm  | 3.1        |   |
| 10:00 pm | 3.1        |   |
| 11:00 pm | 3.1        |   |
| Total    | 100.0      | - |

# **CHAPTER 6—CLIMATE INPUTS**

Detailed climatic data are required for predicting pavement distresses in PMED and include hourly temperature, precipitation, wind speed, relative humidity, and cloud cover. These data are used to predict the temperature and moisture distribution in each of the pavement layers and provide inputs to the JPCP joint opening/closing and faulting as well as the site factors for the IRI regression equations for all pavement types. The climate files that are included with the PMED software were updated in 2016. The new hourly climate data is an assimilated dataset which is based on various ground-based observations. The North American Regional Reanalysis (NARR) climate data is the default for rigid pavements while the Modern Era Retrospective-analysis for Research and Applications-2 (MERRA-2) is the default for flexible pavement designs.

#### 6.1 PROJECT LOCATION INFORMATION

The average **latitude**, **longitude**, **elevation** of the project location should be determined and entered in the software. The latitude and longitude are included on the cover sheet for the plans of a specific roadway project. The mid-point of the project can be selected for the location information. In PMED versions 2.5 or later, the location and elevation may be input by selecting the mid-point of the project using the map function in the climate input window.

The PMED software climate module uses a map based selection and will identify nine weather locations that are closest to the project location based on similar elevation. The designer can select a single weather grid node or multiple locations that are applicable to the project location to create a virtual weather station for the project location. The virtual weather station hourly data is calculated using the inverse squared distance interpolation method. (refer to subsections 6.3 and 6.4 of this chapter).

#### 6.2 DEPTH TO WATER TABLE

The depth to the water table is a parameter that gets entered on the climate screen. The depth to the water table or "free" water is the average distance between the pavement surface and the depth at which free water is encountered. This depth should be representative of cuts and fills along the project location.

The depth to a water table is measured from borings taken along the project location. The depth to the water table has an effect on the moisture content of the unbound layers above the water table. The water table depth entered in the PMED software is the shallower depth to: free water, perched water, or the lateral flow of water. The following provides some guidance in determining the depth to the water table or free water.

- The depth of borings usually does not exceed 10-feet for pavement design purposes, while the depth to the water table exceeds 10 feet in many locations. In addition, the borings are usually not monitored or left open over a sufficient amount of time to measure the depth to water. If seasonal or perched water table depths are known to exist along the project site, these seasonal values should be entered into the software.
- 2. The depth to the water table should be based on local experience and/or from a geotechnical engineer knowledgeable of the local conditions along the specific project. For example, the water depth from historical borings for bridges and other similar structures can be used to estimate that depth.
- Georgia water table data for various locations and counties can be found at the U.S. Geological Survey web site: http://ga.water.usgs.gov/.
- 4. If borings are unavailable and no information can be obtained from other sources adjacent to the project, Table 6.1 can be used as a guide in selecting the annual values to be used.

| Location                                       | Annual Depth to Water Table, ft. |  |  |
|------------------------------------------------|----------------------------------|--|--|
| Coastal Areas or Counties                      | 6                                |  |  |
| Southern Counties: South of the Fall Line      | 10                               |  |  |
| Northern Counties: North of the Fall Line      | 15                               |  |  |
| Mountainous Areas or Higher Elevation Counties | 20                               |  |  |

 Table 6.1—Annual Depth to Water Table Recommended for Use

#### 6.3 CLIMATE STATIONS

The PMED software has a number of national weather stations embedded in the software for ease of use (Figure 6.1). Table 6.2 lists the Georgia weather stations that are currently available in the Pavement ME Design software national database and those stations in adjacent states which are close to the state line. Any one of these weather stations can be selected for a project within the nearby area. The climate data for that station, however, will be used for the distress prediction computations rather than the specific project location. In selecting a climate station, pay attention to the elevation of the station. A climate station should be selected with a similar elevation as it can have a significant effect on air temperature.

The AASHTOWare PMED procedure recommends two or more of these climate stations be selected as close to the project as possible to provide hourly temperature, precipitation, wind speed, relative humidity, and cloud cover information. This allows the user to create a virtual climate station (refer to Section 6.4) at the project location. Since moving to assimilated datasets, the amount of missing hourly climate data has reduced significantly and even eliminated completely.



Figure 6.1—MERRA-2 Grid Cell Locations

#### 6.4 CREATION OF SIMULATED CLIMATE STATION

After selecting the appropriate climate stations in the vicinity of the project and providing the depth to the water table, the user can select one station or simulate a weather station that is most representative of the project location. These simulated climate stations are typically referred to as virtual climate stations.

The simulated or virtual climate station is saved by the software so that it can be used for all future trial designs or sensitivity studies relevant to a specific location. This can be done by

simply selecting the import option and picking the simulated climate station file created for the specific project.

| City               |                                | Climate<br>Station | Longitude<br>(Degrees. | Latitude<br>(Degrees. | Elevation, |
|--------------------|--------------------------------|--------------------|------------------------|-----------------------|------------|
|                    |                                | Number             | Minutes)               | Minutes)              | 11.        |
| Albany, G          | Α                              | 13869              | -84.194                | 31.536                | 190        |
| Alma, GA           |                                | 13870              | -82.507                | 31.536                | 193        |
| Athens, G          | A                              | 13873              | -83.327                | 33.948                | 800        |
| Atlanta,<br>GA     | Fulton Co. Brown Field         | 03888              | -84.521                | 33.779                | 801        |
|                    | Peachtree City Falcon<br>Field | 53819              | -84.567                | 33.355                | 798        |
|                    | Dekalb Peachtree<br>Airport    | 53863              | -84.302                | 33.875                | 977        |
|                    | Hartsfield International       | 13874              | -84.427                | 33.640                | 998        |
| Augusta,<br>GA     | Regional Bush Field            | 03820              | -81.965                | 33.370                | 132        |
|                    | Daniel Field                   | 13837              | -82.039                | 33.467                | 412        |
| Brunswick, GA      |                                | 13878              | -81.391                | 31.252                | 19         |
| Cartersville, GA   |                                | 53873              | -84.849                | 34.123                | 754        |
| Columbus, GA       |                                | 93842              | -84.942                | 32.516                | 392        |
| Gainesville, GA    |                                | 53838              | -83.830                | 34.272                | 1266       |
| Macon, GA          |                                | 03813              | -83.654                | 32.688                | 342        |
| Rome, GA           |                                | 93801              | -85.161                | 34.348                | 692        |
| Savannah           | , GA                           | 03822              | -81.202                | 32.119                | 25         |
| Valdosta. GA       |                                | 93845              | -83.277                | 30.783                | 198        |
| Troy, AL           |                                | 03878              | -86.012                | 31.861                | 385        |
| Jacksonvill<br>FL; | International<br>lle, Airport  | 13889              | -81.693                | 30.494                | 26         |
|                    | Craig Municipal<br>Airport     | 53860              | -81.515                | 30.336                | 46         |
| Charleston, SC     |                                | 13880              | -80.041                | 32.899                | 39         |
| Columbia,<br>SC    | Downtown                       | 53867              | -80.996                | 33.971                | 180        |
|                    | Metropolitan Airport           | 13883              | -81.118                | 33.942                | 225        |
| Greenville, SC     |                                | 13886              | -82.346                | 34.846                | 1006       |
| Greenwoo           | d, SC                          | 53874              | -82.159                | 34.249                | 631        |
| Orangeburg, SC     |                                | 53854              | -80.858                | 33.462                | 196        |
| Chattanooga, TN    |                                | 13882              | -85.200                | 35.033                | 671        |

Table 6.2—Climate Stations Available from AASHTOWare for Georgia (North American Regional Reanalysis, NARR)

# 6.5 USE OF CUSTOM CLIMATE FILES

PMED allows for the establishment and use of custom climate files (\*.hcd format) in the design process. Custom climate .hcd files developed through GDOT research projects 16-10 (Durham

et al, 2019) and 19-16 using MERRA-2 climate data have been created for use as climate inputs in GDOT designs. The custom .hcd files include corrected percent sunshine values based on the surface shortwave radiation values reported in the MERRA-2 climate files.

Custom climate stations should be used for all GDOT pavement designs. Default stations using the hcd files provided through the Pavement ME Design software national database are recommended only when custom stations are not available. To access the custom climate station database, users must select the "Use custom hcd folder and station file" function in the Options dropdown of the Climate window. Table 6.3 lists the Georgia weather stations that have been developed using the custom Georgia climate database.

It should be noted that the custom option might not even be needed other than for rigid pavements because the default is NARR. The only difference between the non-custom and custom selection is to tell the software where to look for the hcd files.

If the custom climate station numbers match the original MERRA-2 station numbers then they can be used directly in the hcd folder instead of the "custom hcd folder".

| City            | Climate Station<br>Number | Latitude<br>(Degrees. Minutes) | Longitude<br>(Degrees. Minutes) | Elevation,<br>ft. |
|-----------------|---------------------------|--------------------------------|---------------------------------|-------------------|
| Panama City, FL | 132632                    | 30.000                         | -85.625                         | 65.60             |
| Eastpoint, FL   | 132633                    | 30.000                         | -85.000                         | 26.24             |
| Panacea, FL     | 132634                    | 30.000                         | -84.375                         | 0.00              |
| Perry. FL       | 132635                    | 30.000                         | -83.750                         | 3.28              |
| Mayo, FL        | 132636                    | 30.000                         | -83.125                         | 82.00             |
| Lake Butler, FL | 132637                    | 30.000                         | -82.500                         | 137.76            |
| Middleburg, FL  | 132638                    | 30.000                         | -81.875                         | 98.40             |
| Chipley, FL     | 133208                    | 30.500                         | -85.625                         | 52.48             |
| Blountstown, FL | 133209                    | 30.500                         | -85.000                         | 45.92             |
| Tallahassee, FL | 133210                    | 30.500                         | -84.375                         | 101.68            |
| Monticello, FL  | 133211                    | 30.500                         | -83.750                         | 78.72             |

 Table 6.3—Climate Stations Available from Custom Database for Georgia

| City                 | Climate Station<br>Number | Latitude<br>(Degrees. Minutes) | Longitude<br>(Degrees. Minutes) | Elevation,<br>ft. |
|----------------------|---------------------------|--------------------------------|---------------------------------|-------------------|
| Jennings, FL         | 133212                    | 30.500                         | -83.125                         | 114.80            |
| Lake City, FL        | 133213                    | 30.500                         | -82.500                         | 137.76            |
| Callahan, FL         | 133214                    | 30.500                         | -81.875                         | 85.28             |
| Slocomb, AL          | 133784                    | 31.000                         | -85.625                         | 206.64            |
| Donalsonville,<br>GA | 133785                    | 31.000                         | -85.000                         | 88.56             |
| Whigham, GA          | 133786                    | 31.000                         | -84.375                         | 154.16            |
| Pavo, GA             | 133787                    | 31.000                         | -83.750                         | 249.28            |
| Lakeland, GA         | 133788                    | 31.000                         | -83.125                         | 206.64            |
| Manor, GA            | 133789                    | 31.000                         | -82.500                         | 141.04            |
| White Oak, GA        | 133790                    | 31.000                         | -81.875                         | 101.68            |
| Ozark, AL            | 134360                    | 31.500                         | -85.625                         | 423.12            |
| Fort Gaines, GA      | 134361                    | 31.500                         | -85.000                         | 278.80            |
| Albany, GA           | 134362                    | 31.500                         | -84.375                         | 262.40            |
| Sumner, GA           | 134363                    | 31.500                         | -83.750                         | 419.84            |
| Ocilla, GA           | 134364                    | 31.500                         | -83.125                         | 311.60            |
| Alma, GA             | 134365                    | 31.500                         | -82.500                         | 180.40            |
| Jesup, GA            | 134366                    | 31.500                         | -81.875                         | 59.04             |
| Crescent, GA         | 134367                    | 31.500                         | -81.250                         | 16.40             |
| Union Springs,<br>AL | 134936                    | 32.000                         | -85.625                         | 492.00            |
| Lumpkin, GA          | 134937                    | 32.000                         | -85.000                         | 505.12            |
| Plains, GA           | 134938                    | 32.000                         | -84.375                         | 501.84            |
| Cordele, GA          | 134939                    | 32.000                         | -83.750                         | 308.32            |
| Milan, GA            | 134940                    | 32.000                         | -83.125                         | 324.72            |
| Uvalda, GA           | 134941                    | 32.000                         | -82.500                         | 196.80            |
| Glennville, GA       | 134942                    | 32.000                         | -81.875                         | 173.84            |
| Savannah, GA         | 134943                    | 32.000                         | -81.250                         | 13.12             |
| Notasulga, AL        | 135512                    | 32.500                         | -85.625                         | 337.84            |
| Phenix City, AL      | 135513                    | 32.500                         | -85.000                         | 377.20            |
| Mauk, GA             | 135514                    | 32.500                         | -84.375                         | 695.36            |
| Perry, GA            | 135515                    | 32.500                         | -83.750                         | 416.56            |
| Dudley, GA           | 135516                    | 32.500                         | -83.125                         | 341.12            |
| Adrian, GA           | 135517                    | 32.500                         | -82.500                         | 203.36            |
| Statesboro, GA       | 135518                    | 32.500                         | -81.875                         | 255.84            |
| Clyo, GA             | 135519                    | 32.500                         | -81.250                         | 88.56             |
| Beaufort, SC         | 135520                    | 32.500                         | -80.625                         | 0.00              |
| Daviston, AL         | 136088                    | 33.000                         | -85.625                         | 669.12            |
| City                 | Climate Station<br>Number | Latitude<br>(Degrees. Minutes) | Longitude<br>(Degrees. Minutes) | Elevation,<br>ft. |
|----------------------|---------------------------|--------------------------------|---------------------------------|-------------------|
| Lagrange, GA         | 136089                    | 33.000                         | -85.000                         | 675.68            |
| Meansville, GA       | 136090                    | 33.000                         | -84.375                         | 1151.28           |
| Juliette, GA         | 136091                    | 33.000                         | -83.750                         | 482.16            |
| Milledgeville, GA    | 136092                    | 33.000                         | -83.125                         | 232.88            |
| Bartow, GA           | 136093                    | 33.000                         | -82.500                         | 252.56            |
| Sardis, GA           | 136094                    | 33.000                         | -81.875                         | 295.20            |
| Allendale, SC        | 136095                    | 33.000                         | -81.250                         | 154.16            |
| Walterboro, SC       | 136096                    | 33.000                         | -80.625                         | 88.56             |
| Heflin, AL           | 136664                    | 33.500                         | -85.625                         | 885.60            |
| Carrollton, GA       | 136665                    | 33.500                         | -85.000                         | 974.16            |
| Jonesboro, GA        | 136666                    | 33.500                         | -84.375                         | 869.20            |
| Mansfield, GA        | 136667                    | 33.500                         | -83.750                         | 701.92            |
| Greensboro, GA       | 136668                    | 33.500                         | -83.125                         | 610.08            |
| Thomson, GA          | 136669                    | 33.500                         | -82.500                         | 495.28            |
| Burnettown, SC       | 136670                    | 33.500                         | -81.875                         | 183.68            |
| Springfield, SC      | 136671                    | 33.500                         | -81.250                         | 236.16            |
| Elloree, SC          | 136672                    | 33.500                         | -80.625                         | 164.00            |
| Piedmont, AL         | 137240                    | 34.000                         | -85.625                         | 754.40            |
| Rockmart, GA         | 137241                    | 34.000                         | -85.000                         | 970.88            |
| Sandy Springs,<br>GA | 137242                    | 34.000                         | -84.375                         | 852.80            |
| Winder, GA           | 137243                    | 34.000                         | -83.750                         | 1006.96           |
| Comer, GA            | 137244                    | 34.000                         | -83.125                         | 669.12            |
| Mount Carmel,<br>SC  | 137245                    | 34.000                         | -82.500                         | 498.56            |
| Saluda, SC           | 137246                    | 34.000                         | -81.875                         | 554.32            |
| Lexington, SC        | 137247                    | 34.000                         | -81.250                         | 390.32            |
| Rembert, SC          | 137248                    | 34.000                         | -80.625                         | 137.76            |
| Fort Payne, AL       | 137816                    | 34.500                         | -85.625                         | 1590.80           |
| Calhoun, GA          | 137817                    | 34.500                         | -85.000                         | 659.28            |
| Jasper, GA           | 137818                    | 34.500                         | -84.375                         | 1931.92           |
| Clermont, GA         | 137819                    | 34.500                         | -83.750                         | 1413.68           |
| Gumlog, GA           | 137820                    | 34.500                         | -83.125                         | 688.80            |
| Belton, SC           | 137821                    | 34.500                         | -82.500                         | 800.32            |
| Clinton, SC          | 137822                    | 34.500                         | -81.875                         | 587.12            |
| Blackstock, SC       | 137823                    | 34.500                         | -81.250                         | 498.56            |
| Kershaw, SC          | 137824                    | 34.500                         | -80.625                         | 518.24            |
| New Hope, TN         | 138392                    | 35.000                         | -85.625                         | 783.92            |

| City                  | Climate Station<br>Number | Latitude<br>(Degrees. Minutes) | Longitude<br>(Degrees. Minutes) | Elevation,<br>ft. |
|-----------------------|---------------------------|--------------------------------|---------------------------------|-------------------|
| Apison, TN            | 138393                    | 35.000                         | -85.000                         | 954.48            |
| Copperhill, TN        | 138394                    | 35.000                         | -84.375                         | 1610.48           |
| Hayesville, NC        | 138395                    | 35.000                         | -83.750                         | 2063.12           |
| Clayton, GA           | 138396                    | 35.000                         | -83.125                         | 2915.92           |
| Travelers Rest,<br>SC | 138397                    | 35.000                         | -82.500                         | 1105.36           |
| Spartanburg, SC       | 138398                    | 35.000                         | -81.875                         | 751.12            |
| York, SC              | 138399                    | 35.000                         | -81.250                         | 718.32            |
| Monroe, NC            | 138400                    | 35.000                         | -80.625                         | 652.72            |

# 6.6 SCREEN SHOTS FOR THE CLIMATE INPUTS

The following are screen shot examples that show the climate inputs discussed within this chapter. The drop-down arrows are used to access or select specific information and other input values for the project.





# Depth to Water Table

| * | Project Climate             |                               |              |              |   |
|---|-----------------------------|-------------------------------|--------------|--------------|---|
|   | Elevation                   | 1                             | 1049,98      |              |   |
|   | Climate station             | X                             | Not Set      |              |   |
|   | Latitude (decimals degrees) | 1                             | 33.74        |              |   |
|   | Longitude (decimal degrees) | 1                             | -84.38       | 0            |   |
|   | Depth of water table (ft)   | 1                             | Annual(1     | 0)           | ~ |
| × | Identifiers                 |                               |              | ana ana araa |   |
|   | Approver                    | Average depth of water table: |              |              |   |
|   | Date approved               | O Seasonal   Annual           |              |              |   |
|   | Author                      |                               |              |              |   |
|   | Date created                |                               |              |              |   |
|   | County                      | Period                        | Vvater Table |              |   |
|   | Description of object       | Annual                        |              | Depth (it)   |   |
|   | Direction of travel         |                               |              | 10           |   |
|   | Display name/identifier     |                               |              |              |   |
|   | District                    |                               |              |              |   |
|   | From station (miles)        |                               |              |              |   |
|   | Item Locked?                |                               |              |              |   |
|   | Highway                     |                               |              |              |   |
|   | Revision Number             |                               |              |              |   |

### **Climate Station Map**



### **Custom Climate Station Selection**



# **CHAPTER 7—DESIGN FEATURES AND LAYER PROPERTY INPUTS**

Different features and properties are required by the PMED software for different pavement types or materials. The layer structure should be set up prior to entering any of the layer features and properties. This chapter discusses the features and properties required for specific pavement types. Example screen shots showing the design features and layer property inputs are included at the end of each section within this chapter.

# 7.1 AC (HMA) LAYER PROPERTIES: NEW AND EXISTING LAYERS

### 7.1.1 Multi-Layer Rutting Calibration Parameters

The PMED version 2.1 and later permits the user to input layer specific plastic deformation parameters of the rut depth transfer function. This feature was unavailable when the local calibration work was completed for GDOT. As such, the same plastic deformation parameters should be used for all HMA layers (refer to Chapter 9 for the local calibration permanent deformation factors). The multi-layer rutting option in the PMED software should be false which is also the PMED default value.

### 7.1.2 HMA/AC Surface Shortwave Absorptivity

Use the default value for the HMA surface shortwave absorptivity for all new pavement and rehabilitation designs; a value of 0.85. This value should not be changed without revising the local calibration parameters.

### 7.1.3 Endurance Limit

The PMED software permits the user to enter an endurance limit for HMA layers or mixtures. The endurance limit represents the tensile strain at which no fatigue cracking damage accumulates within that layer.

The global calibration of the fatigue cracking transfer function did not include the endurance limit as a mixture property or design feature. Similarly, the GDOT local calibration of the bottom-up fatigue cracking transfer function did not include the endurance limit as a mixture property or design feature. Thus, it is recommended that the endurance limit not be used in design.

### 7.1.4 Layer Interface Friction

All global and regional calibration studies have been completed assuming full friction between each layer, because there is no standardized test for measuring this value. An interface friction value of 1.0 represents full friction. Thus, a value of 1.0 should be used for design.

An interface friction value of 0 represents no friction between two adjacent layers (e.g., not including a tack coat between an existing HMA surface and HMA overlay). No friction should only be used for forensic investigations to answer "what if" questions. Interface friction values less than 1.0 will increase HMA rutting and fatigue cracking. All pavement designs should be completed with full interlayer friction.

### 7.1.5 Rehabilitation: Condition of Existing Flexible Pavement

The condition of the existing flexible pavement surface is estimated from the distress measurements (condition surveys [input levels 2 or 3]) or determined from backcalculated elastic modulus (input level 1). Rehabilitation input level 1 should be used when deflection basin data

are available. For input levels 2 or 3, the distresses on the existing pavement can be obtained from current condition surveys or extracted from PACES or the computerized PACES (COPACES). The following summarizes the use of different input levels for rehabilitation designs. It is worth noting that the rehabilitation input option is not included for new flexible pavement designs.

1. Rehabilitation input level 1

Deflection basins provide valuable information and are believed to result in more reliable rehabilitation designs. Measured deflection basins are used to estimate the in place elastic modulus values for each structural layer and subgrade of the existing pavement. Backcalculation of the elastic layer modulus values are determined or calculated external to the PMED software. The average backcalculated values for a specific design section should be entered for each pavement layer and subgrade soil. These elastic modulus values for each pavement layer and subgrade are discussed in the next chapter of the User Input Guide.

The other input required for rehabilitation input level 1 is the average rut depth within each pavement layer and subgrade. Table 7.1 lists the percentages to be used in distributing the total rut depth measured at the surface to each pavement layer and subgrade.

| IUNI |                         |                                                       |  |
|------|-------------------------|-------------------------------------------------------|--|
|      | Flexible Pavement Layer | Ratio of Total Rut Depth<br>Distributed to Each Layer |  |
| HN   | MA/AC                   | 0.75                                                  |  |
| Gr   | anular Aggregate Base   | 0.10                                                  |  |
| Sι   | ıbgrade                 | 0.15                                                  |  |

Table 7.1—Ratios to Distribute Total Rut Depth to Individual Lavers

These percentages were determined through the global calibration process under NCHRP projects 1-37A and 1-40D, and based on a limited number of studies at the

global and local levels (Colorado, Montana, etc.). The values were verified based on the local calibration study for GDOT using the LTPP and non-LTPP roadway segments by determining the values that result in the lowest standard error of the rut depth transfer function.

2. Rehabilitation input level 2

If deflection data are unavailable to estimate the in-place condition of the HMA layers, the use of input level 2 is reasonable without significantly increasing the cost of the pavement evaluation costs. For input level 2, two inputs are required to determine the condition of the existing pavement layers. These inputs are listed and defined below:

- 1) The average total amount of fatigue cracking (load cracking per GDOT's PACES/COPACES) within the wheel path area in terms of percent of total lane area should be entered for each design section. The designer can also use the distress data and information included in GDOT's pavement management database. In this case, Figure 7.1 should be used to transform the historical information or data into the cracking values predicted by the MEPDG software. The designer simply enters the GDOT total amount of load cracking in Figure 7.1 to estimate the amount or area of bottom-up alligator fatigue cracking.
- 2) The average rut depth within each pavement layer and subgrade, which is the same as for rehabilitation input level 1, as defined above.



EXAMPLE: Enter the total load cracking number on the x-axis and project up to the intersection of the dashed line. At the intersection with the dashed line, project horizontally to the y-axis to determine the estimated total alligator cracking that would be measured in accordance with LTPP.
NOTE: If the GDOT load cracking number is composed entirely of severity level 1, the total alligator cracking should be limited to a maximum value of 16 percent. If the GDOT load cracking number is composed of entirely severity levels 1 and 2, the total alligator cracking should be limited to a maximum value of 20 percent. For all other combinations of the GDOT load cracking number, the total alligator cracking should be limited to a maximum value of 30 percent.

### Figure 7.1—Relationship between GDOT's Load Cracking Number (All Severity Levels) included in PACES and the Total Area of Alligator Fatigue Cracking

3. Rehabilitation input level 3

Five subjective pavement ratings are used to describe the condition of the pavement

surface, which are defined in the MOP and considered appropriate for GDOT. Table

7.2 relates the subjective condition survey ratings included in the PMED software to

GDOT PACES rating reported for each roadway segment for planning purposes.

The other input required for input level 3 is the average total rut depth measured at the

surface of the HMA. The PMED software distributes that total rut depth measured at

the surface to the different layers using the layer percentages determined under the

NCHRP Project 1-37A project.

| GDOT PACES and COPACES | MEPDG Subjective Condition |
|------------------------|----------------------------|
| Rating Index           | Ratings; Input Level 3     |
| > 90                   | Excellent                  |
| 80 to 90               | Good                       |
| 70 to 80               | Fair                       |
| 60 to 70               | Poor                       |
| <60                    | Very Poor                  |

 Table 7.2—MEPDG Condition Ratings for the GDOT PACES Rating or Composite

 Pavement Condition Index

# 7.1.6 Milled Thickness of Existing HMA Layers

Milling a portion of the existing HMA is a common rehabilitation activity prior to placing the HMA overlay. The planned milled thickness is entered in the AC Layer Properties screen under Rehabilitation.

The thickness of the combined existing HMA layers should be the thickness "after" milling. The milled-thickness is used for damage computations based on the dynamic modulus and is not subtracted from the existing HMA layer thickness. Additional discussion is provided under Section 8.1 on entering the thickness of the existing HMA layers when one or more overlays have already been placed on the original flexible pavement and/or when more than three HMA layers are placed.

# 7.1.7 Screen Shots for the AC (HMA) Layer Properties: New and Existing Layers

The following are screen shot examples that show the AC Layer Property inputs discussed within this section of Chapter 7. The drop-down arrows are used to access or select specific information and other input values for the project.

## **Overall Screen Shot for the AC Layer Properties**



### 7.2 JPCP: NEW AND EXISTING LAYERS

#### 7.2.1 PCC Surface Shortwave Absorptivity

Use the default value for the PCC surface shortwave absorptivity for all new pavement and rehabilitation designs; a value of 0.85.

# 7.2.2 Joint Spacing

PMED allows two options for the joint spacing of JPCP: a constant or random joint spacing. GDOT only permits the use of a constant joint spacing. However, a random joint spacing has been used or allowed by GDOT in the past. The joint spacing used on most projects in Georgia is 15 to 20 feet. The recommended joint spacing for most jointed plain concrete pavements (JPCP) is 15 feet. This spacing provides a good balance between minimization of transverse cracking and joint costs.

### 7.2.3 Sealant Type

PMED allows two options for the type of sealant used in the transverse joints: preformed and other sealants. The other sealants listed in the PMED software include liquid (hot and cold poured) sealants, silicone, and/or no sealant. Georgia currently seals the joint with silicone, so the 'other sealant' option should be used.

### 7.2.4 Dowels

GDOT typically uses dowels in all transverse joints of JPCP because appropriately sized dowels control joint faulting. The trial diameter and spacing of the dowels are inputs to PMED. GDOT typically uses 1.5 inch dowels for pavements 10 inches or thicker, but the Georgia Standard

69

5046H should be referenced to determine appropriate diameter for the design. The spacing of the dowels is typically 12 inches.

The program outputs joint faulting predictions which must meet the faulting criteria at the designated reliability level.

### 7.2.5 Widened Slab

Widened slabs are used to reduce the edge stresses from wheel loads. The user enters the width of the widened slab for the specific project. A maximum of 1-ft widening of the slab should be used. Thus, the paint strip is placed at 12 feet, but the slab placement width is 13 feet.

### 7.2.6 Tied Shoulders

Tied shoulders are used to reduce the edge stresses from the wheel loads. The user simply identifies whether the shoulders will be tied to the JPCP for the specific project. A longitudinal joint load transfer efficiency of 40 percent should be used.

### 7.2.7 Erodibility Index

The erodibility index for JPCP is defined by the type of base material for the specific project, and is classified in five categories, which are listed in Table 7.3. More erosion resistant base material results in lower predicted joint faulting and a thinner PCC layer.

### 7.2.8 PCC-Base Contact or Interface Friction for JPCP

JPCP design should be based on full friction between the slab and base course, and nothing should be done in construction to break the bond between layers. Some base types, however, are prone to debond after a few years and this increases stress in the slab that leads to cracking.

70

The following lengths of time for full contract friction between the PCC slab and base course are recommended (means and range obtained from the national or global calibration). This is one of the reasons GDOT uses either HMA (or asphalt stabilized base) or GAB for the base layer under the PCC slabs.

- 1. Asphalt Stabilized Base: Use full design analysis period.
- Cement Stabilized Base: Use up to 120 months as there is a good chance of deboning after this stage.
- 3. Lime Treated Base: Use up to 150 months
- 4. Lean Concrete Base: Use zero (0) months if base is finished smooth and cured with wax based curing compound.
- 5. Unbound Granular Aggregate Base: Use full design analysis period.

| Erodibility Category |                             | Recommendation Based on Type of Base Material                                                                |  |
|----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------|--|
| 1                    | Extremely Erosion Resistant | Asphalt Stabilized Layer or HMA.                                                                             |  |
| 2                    | Very Erosion Resistant      | Cement Treated or Lean Concrete Base Layer.                                                                  |  |
| 3                    | Erosion Resistant           | Dense-graded crushed stone or granular aggregate base (GAB) materials with less than 10 percent fines.       |  |
| 4                    | Fairly Erodible             | Dense-graded or granular aggregate base materials with more than 10 percent fines; <i>typical GDOT GAB</i> . |  |
| 5                    | Very Erodible               | Silts and other non-cohesive fine-grained soils and cohesive soils.                                          |  |

### Table 7.3—Erodibility Category Index Recommended for Different Base Materials

# 7.2.9 Pavement Curl/Warp Effective Temperature Difference

Use the default value for the PCC pavement curl/warp effective temperature difference for all new pavement and rehabilitation designs; a value of -10 degree Fahrenheit (°F).

### 7.2.10 Foundation Support for Rehabilitation of Rigid Pavements

The foundation support (subgrade) **resilient modulus at optimum moisture and maximum dry unit weight** can be estimated based on soil class or California Bearing Ratio (CBR) and entered similar to the design of new rigid pavements. [See section 8.6.2 of this Guide for a more detailed discussion on Resilient Modulus.] If Falling Weight Deflectometer (FWD) testing is available, however, the **K-value can be obtained from backcalculation** and entered directly into the PMED software for the month tested. K-value can be calculated in accordance with the procedure documented in the 1993 AASHTO Design Guide or with other software programs (*Von Quintus and Rao, 2015*). This process is by far the most accurate approach that gives subgrade support along the project.

### 7.2.11 Condition of Existing PCC Surface for JPCP Rehabilitation Design

The inputs to describe the condition of the existing PCC surface and any repairs made to the surface are listed below and discussed in the next chapter of the User Input Guide under rehabilitation of rigid pavements.

Two inputs are required for the existing PCC layer when designing an HMA overlay of an existing JPCP or diamond grinding: (1) the user determines the **percentage of slabs that are transversely cracked or have been replaced prior to rehabilitation or restoration**, and (2) the **percentage of slabs that will be replaced as part of the rehabilitation project after restoration**. These two inputs are important because they define the in-place damage of the JPCP for predicting future damage and cracking of the PCC slabs.

# 7.2.12 Screen Shots for the JPCP Layer Properties: New and Existing Layers



The following are screen shot examples that show the JPCP Design Property and other inputs discussed within this section of Chapter 7. The drop-down arrows are used to access or select specific information and other input values for the project.

# Overall Screen Shot for the JPCP Design Properties, Foundation Support, and JPCP Rehabilitation

# JPCP Design Properties Screen

| JPCP Design                             |                                                |
|-----------------------------------------|------------------------------------------------|
| PCC surface shortwave absorptivity      | ✓ 0.85                                         |
| PCC joint spacing (ft)                  | 15                                             |
| Sealant type                            | Preformed 🗨                                    |
| Doweled joints                          | Spacing(12), Diameter(1.25)                    |
| Is joint doweled ?                      | True                                           |
| Dowel diameter (in.)                    | ✓ 1.25                                         |
| Dowel spacing (in.)                     | ✓ 12                                           |
| Widened slab                            | Not widened                                    |
| Is slab widened ?                       | False                                          |
| Slab width (ft)                         |                                                |
| Tied shoulders                          | Not tied                                       |
| Tied shoulders                          | False                                          |
| Load transfer efficiency (%)            |                                                |
| Erodibility index                       | Very erosion resistant (2)                     |
| PCC-base contact friction               | Full friction with friction loss at (240) mont |
| PCC-Base full friction contact          | True                                           |
| Months until friction loss              | ✓ 240                                          |
| Permanent curl/warp effective temperate | ure c 🖌 -10                                    |

# Sealant Type Screen Shot

|   | Sealant type         | Preformed                                   | - |
|---|----------------------|---------------------------------------------|---|
| ⊿ | Doweled joints       | Other(Including No Sealant Liquid Silicone) |   |
|   | Is joint doweled ?   | Preformed                                   |   |
|   | Dowel diameter (in.) | V 1.23                                      |   |
|   | Dowel spacing (in.)  | ✓ 12                                        |   |

# Erodibility Index Screen Shot

|   | Erodibility index                            | Very erosion resistant (2)      |
|---|----------------------------------------------|---------------------------------|
| ⊿ | PCC-base contact friction                    | Extremely erosion resistant (1) |
|   | PCC-Base full friction contact               | Very erosion resistant (2)      |
|   | Months until friction loss                   | Erosion resistant (3)           |
|   | Permanent curl/warp effective temperature of | Fairly erodible (4)             |
| 4 | Identifiers                                  | Very erodible (5)               |
|   |                                              |                                 |

# Foundation Support

| Foundation Support                               |            |      |
|--------------------------------------------------|------------|------|
|                                                  |            |      |
| Modulus of Subgrade Reaction                     |            |      |
| <ul> <li>Modulus of subgrade reaction</li> </ul> | Calculated |      |
| Is modulus of subgrade reaction measured?        | False      | 2001 |
| Dynamic modulus of subgrade reaction (psi/in.)   |            |      |
| Month modulus of subgrade reaction measured      |            |      |
|                                                  | 10 10      |      |

# JPCP Rehabilitation

| Existing JPCP Condition                              | * |
|------------------------------------------------------|---|
| 21   III                                             |   |
| JPCP Rehabilitation                                  | * |
| Slabs distressed/replaced before restoration (%) 🗹 0 |   |
| Slabs repaired/replaced after restoration (%)        |   |

### 7.3 CRCP: NEW AND EXISTING LAYERS

#### 7.3.1 Inputs

The inputs for the PCC layer of CRCP are the same as for JPCP listed above, except as summarized below:

- Shoulder type: The type of shoulder is determined by the user. Four shoulder types are available for consideration: (1) tied PCC, separate; (2) tied PCC, monolithic, (3) asphalt, and (4) gravel or an unbound granular aggregate base material. A roller compacted concrete can be assumed as an asphalt shoulder since it is not tied into the PCC slab. If alternates are allowed, use an asphalt shoulder for the design.
- Percent longitudinal steel included in the PCC slab is a project specific design input and varies between 0.65 and 0.80 percent area of slab. This is a critical input to the design.
- 3. Bar diameter of the longitudinal steel reinforcement is a project specific design input.
- 4. Depth of the longitudinal steel reinforcement is a project specific design input. The longitudinal steel is usually placed at the mid-depth or higher in the PCC slab. Placement just above mid-depth (3.5 inches of concrete cover minimum), however, will result in tighter cracks and improved performance.
- 5. Base/Slab friction coefficient or the coefficient of friction at the interface of the CRCP and layer supporting the CRCP. There is no test method for measuring the coefficient of friction between two pavement layers. Table 7.4 summarizes the default values recommended for design which are included in the most recent MOP Edition (AASHTO, 2020).

# Table 7.4—Base/Slab Friction Coefficient Recommended based on Different Layers below CRCP (AASHTO, 2020)

| Base Type               | Friction Coefficient<br>(mean) |
|-------------------------|--------------------------------|
| Asphalt treated base    | 8.5                            |
| Cement treated base     | 9.6                            |
| Lime treated base       | 10.7                           |
| Granular aggregate base | 2.7                            |

# 7.3.2 Screen Shots for the CRCP Layer Properties: New and Existing Layers

The following are screen shot examples that show the CRCP Design Property and other inputs discussed within this section of Chapter 7. The drop-down arrows are used to access or select specific information and other input values for the project.

Overall Screen Shot for the CRCP Design Properties, Foundation Support, and JPCP Rehabilitation

| Explorer 🛛 🐺 🗙                             | 13_4118_1:Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                              | • X         |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|-------------|
|                                            | General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Performance Criteria                                                     | Limit                                        | Reliability |
| Traffic                                    | Design type: Overlay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initial IRI (in./mile)                                                   | 63                                           |             |
| CRCPDesignProperty                         | Design life (years): 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Terminal IRI (in./mile)                                                  | 172                                          | 50          |
| Foundation Support                         | Existing construction: June  1963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRCP punchouts (1/mile)                                                  | 10                                           | 50          |
| Layer I FUL : UNUP                         | Pavement construction July                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |                                              |             |
| Layer 2 Rexible : Default asphalt concrete | Traffic opening: August 🔻 1963 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                              |             |
| Layer 4 Subgrade : A-6                     | Special traffic loading for flexible pavements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |                                              |             |
| Backcalculation                            | Add Laver 🗯 Remove Laver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |                                              |             |
| Project Specific Calibration Factors       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRCP Design Properties                                                   |                                              | •           |
| Optimization                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2↓ □                                                                     |                                              |             |
| Excel Output Report                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRCP Design     PCC surface shorthane absorptivity                       | 2 0.85                                       | *           |
| - Multiple Project Summary<br>Batch Run    | Click here to edit Layer 1 PCC : CRCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shoulder type                                                            | Asphalt (2)                                  |             |
| Tools                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Permanent curl/warp effective temperature difference (deg F<br>Steel (%) | <ul> <li>✓ -10</li> <li>✓ 0.62</li> </ul>    | E           |
| ME Design Calibration Factors              | Click here to edit Layer 3 Sandwich/Fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bar diameter (in.)                                                       | 2.5                                          |             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Base/slab friction coefficient                                           | ▼ 7.5                                        |             |
|                                            | Click here to edit Layer 4 Subgrade : A-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Crack spacing     Identifiers                                            | Generate crack spacing using prediction mode | ł           |
|                                            | A state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta | Description which                                                        | Default CBCP Design Properties               |             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Author                                                                   | Deraul Chief Design Tropenies.               |             |
|                                            | Click here to edit Layer 5 Subgrade : A-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date souted<br>Any ser                                                   |                                              | +           |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRC Design                                                               |                                              |             |
|                                            | The second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |                                              |             |
| ()                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                              |             |
| CRCP Design Properties                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                              | •           |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                              |             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                              | -           |
|                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                              | -           |
| PCC surface shortwave abso                 | orptivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ✓ 0.85                                                                   |                                              |             |
| Shoulder type                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asphalt (2)                                                              |                                              |             |
| Permanent curl/warp effective              | e temperature difference (de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eg F 🗹 -10                                                               |                                              | 1           |
| Steel (%)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ 0.62                                                                   |                                              | 1           |
| Bar diameter (in.)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ 0.63                                                                   |                                              |             |
| Steel depth (inch)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ 3.5                                                                    |                                              |             |
| Base/slab friction coefficient             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓ 7.5                                                                    |                                              |             |
| Crack spacing                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Generate crack spacing us                                                | ing prediction model                         |             |

# Shoulder Type

| Shoulder type                                           | Asphalt (2)                  |                                           |
|---------------------------------------------------------|------------------------------|-------------------------------------------|
| Permanent curl/warp effective temperature difference (d | eg F Tied PCC - Separate (0) |                                           |
| Steel (%)                                               | Tied PCC - Monolithic (1)    |                                           |
| Bar diameter (in.)                                      | Asphalt (2)                  | 0.2 M.C. M.C. M.C. M.C. M.C. M.C. M.C. M. |
| Steel depth (inch)                                      | Gravel (3)                   |                                           |
| Page/alph friction coofficient                          |                              |                                           |

# **Crack Spacing**

| 4 | Crack spacing                                     | Generate crack spacing using prediction model |
|---|---------------------------------------------------|-----------------------------------------------|
|   | Is crack spacing computed using prediction model? | True                                          |
|   | Crack spacing (in.)                               |                                               |
|   | 11.00                                             |                                               |

# **CHAPTER 8—LAYER/MATERIAL PROPERTY INPUTS**

The inputs to define the structure are straightforward and include the material type and thickness of each layer included in the design strategy. Figure 8.1 shows the pavement layer structure typically required by GDOT, and Table 8.1 lists the minimum and maximum layer thicknesses appropriate for input in the PMED software. The values found in Table 8.1 do not reflect current GDOT design recommendations but instead provide the range of thickness values recorded for each material during the local calibration process. The GDOT Pavement Design Manual or Policy Design Manual should be referenced for design thicknesses from official design standards such as the 2018 guidelines for Superpave and other mix type selection Guidelines and the Geotechnical QA/QC Manual.<sup>5</sup>

# 8.1 PAVEMENT LAYERS FOR FLEXIBLE PAVEMENT DESIGN

The following provides a recommendation for creating the pavement structure used in a new or rehabilitated flexible pavement analysis (see Figure 8.1).

# 8.1.1 HMA and Asphalt Stabilized Base Layers

For both new construction and rehabilitation designs, thin HMA layers (less than 1.0 inch in thickness) should be combined with an adjacent structural layer. As an example, open graded or porous friction courses, PEM, 4.75 mm mixture, and other thin layers should be combined with the lower or adjacent dense-graded HMA/AC Superpave mixture or layer.

1. For new construction or reconstruction problems, limit the number of HMA layers to three (maximum number allowed). The lower layer controls bottom-up or alligator

<sup>&</sup>lt;sup>5</sup> The number of layers used in an analysis has an effect on the PMED run time—using more layers, increases the run time.

cracking, while the upper layers have more control on the predictions of rut depth and longitudinal or top-down cracking. For flexible pavements & HMA/AC overlays, the designer should iterate on the lower HMA/AC overlay layer for determining the required total thickness. When combining thin surface layers with a lower dense-graded HMA/AC layer for new construction, the layer thickness ratios in Table 8.2 should be used in determining the equivalent thickness of the lower dense graded HMA/AC layer in accordance with equation 1 to be entered in the PMED software.

$$D_{equivalent} = D_{Dense-Graded} + \left( R \left[ D_{Thin-Layer} \right] \right)$$
(1)

Where:

8.2.

| Dequivalent                       | - Thickness of the equivalent dense-graded mix.                                                  |
|-----------------------------------|--------------------------------------------------------------------------------------------------|
| <b>D</b> <sub>Dense</sub> -Graded | - Use thickness of the lower dense-graded mix, see Table 8.1.                                    |
| R                                 | - Equivalent thickness ratio of the thin layer to the dense-graded layer; provided in Table 8.2. |
| DThin-Layer                       | - Thickness of the thin layer which is identified in Tables 8.1 and                              |



Figure 8.1—New Pavement Structures Typically Required by GDOT

| Lavor/Matorial | Layer Thickness, in.                                                                                                                                                     |                     |      |      |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|------|--|
| Layer/Wateria  | Designation                                                                                                                                                              | Use                 | Min. | Max. |  |
| PCC            | JPCP                                                                                                                                                                     | Design <sup>A</sup> | 6.0  | 15.0 |  |
|                | CRCP                                                                                                                                                                     | Design <sup>A</sup> | 7.0  | 15.0 |  |
|                | HMA Interlayer                                                                                                                                                           | Manual <sup>B</sup> | N    | A*   |  |
| HMA/AC         | Surface Layer                                                                                                                                                            | Manual <sup>B</sup> | 0.75 | 2.5  |  |
|                | Binder Layer                                                                                                                                                             | Manual <sup>B</sup> | 1.75 | 3.0  |  |
|                | LaySerial DesignationLayJPCPDesignCRCPDesignHMA InterlayerManualSurface LayerManualBinder LayerManualBase LayerManualBase LayerManualSubgradeDesignStabilized SoilDesign | Manual <sup>B</sup> | 3.0  | 12.0 |  |
|                | GAB                                                                                                                                                                      | Manual <sup>B</sup> | 7.5  | 16.0 |  |
| Unhound Lovero | Asphalt Base                                                                                                                                                             | Manual <sup>B</sup> | 3.0  | 12.0 |  |
| Unbound Layers | Subgrade                                                                                                                                                                 | Design <sup>A</sup> |      | NA*  |  |
|                | Stabilized Soil                                                                                                                                                          | Design <sup>A</sup> | 7.5  | 12.0 |  |

Table 8.1—Minimum and Maximum Layer Thicknesses

\*NA - Not Applicable.

Note A: "Design" in the Use Column means the thickness is to be design for the specific project Note B: "Manual" in the Use Column means the thickness is to be designed in accordance with the GDOT Pavement Design Manual or Policy Design Manual

Table 8.2—HMA/AC Layer Thickness Ratios (R) to be Used in Combining Thin Layers with Lower Dense-Graded HMA/AC Layers

| Thin Layers                           | Ratio to a Dense-Graded Layer |  |  |
|---------------------------------------|-------------------------------|--|--|
| Open-Graded or Porous Friction Course | 0.75                          |  |  |
| PEM                                   | 0.75                          |  |  |
| 4.75 mm Mix                           | 1.0                           |  |  |

The above ratios were determined based on the equivalent stiffness method.

2. For rehabilitation, the existing HMA/AC and overlay layers are restricted to four total AC layers. When three layers are entered to represent the existing HMA, only one overlay layer can be used. For this case, the thickness entered into the software for the existing upper layer is defined as the existing layer thickness (prior to milling) minus the milled thickness (see Section 7.1.6). Conversely, if three overlay layers are entered, only one layer can be used to represent the existing HMA layers. For this case, the thickness entered into the software for the software for the thickness entered into the software for the existing HMA layers. For this case, the thickness entered into the software for the existing layer is defined as the total existing AC thickness (prior to milling) minus the milled thickness. For rehabilitation, it is recommended that the existing HMA/AC layers be combined as one

layer, unless there is a specific reason why two layers should be simulated. Results from deflection basin testing and the backcalculation of elastic layer modulus values should be used to determine whether the existing HMA layers are confined to one or two layers.

#### 8.1.2. Base Layers

GDOT typically uses one type of base layer along a project, which include additional asphalt base (25 mm HMA), soil cement, and granular aggregate base (GAB). Asphalt stabilized base layers were noted above, while the others are discussed in the bullets below.

- 1. Unbound Granular Aggregate Base (GAB) Layers: Limit the compacted GAB layers to two for both new and rehabilitation design; most of the designs will include only one GAB layer that is placed in two lifts. If more than two layers are being considered within the design strategy combine similar materials, especially any layer that is relatively thin (less than 6 inches). The number of unbound GAB layers of the existing pavement structure for rehabilitation design should coincide with the pavement structure used to backcalculate elastic layer modulus values from deflection basin data.
- 2. Cement Treated Base or Cementitious Layers: No more than one layer of cement, lime, or lime-fly ash stabilized base layer should be used in the analysis. This does not include stabilized subgrade soils, which is covered under the next major bullet item. When the cementitious layer is placed directly below the HMA layer, even if this layer is a stabilized subgrade, the pavement structure is defined as a semi-rigid pavement (see Figure 8.1). Semi-rigid pavements were calibrated nationally in 2018.

83

There were limited semi-rigid pavements with sufficient materials data for use in the local calibration process for GDOT (see Table 2.1).

3. Asphalt Base (25mm HMA): A layer of 25mm HMA may be used as replacement for a typical GAB layer in certain projects where GAB applications are less feasible. Only three total asphalt layers are permitted in the software for new design. Using asphalt base as a base layer substitute will limit the maximum number of asphalt surface layers to two.

### 8.1.3. Stabilized Subgrade

No more than one layer of a stabilized subgrade should be used in the analysis. It is permissible to include a stabilized aggregate base layer and stabilized subgrade within the same run. In the past, GDOT has treated this layer as an equal thickness of GAB. Stabilized subgrades simulated in the PMED software, however, are treated separately and should be simulated as such in accordance with the following guidance.

- If the stabilized subgrade is used as a construction platform with only minimum additive for improving the strength, the layer should be combined with the subgrade layer and not treated as a separate layer.
- Conversely, a stabilized subgrade for improving the structural strength of the pavement is entered as a separate layer with a constant elastic or resilient modulus value for that layer. The inputs for these stabilized soils are included in Section 8.7 of the User Input Guide.

### 8.1.4. Embankment/Foundation Layers or Subgrade

The subgrade should be limited to two layers; a compacted embankment layer and the natural or undisturbed soil. The exception to this recommendation is when a water table is located near the surface (less than 10 ft.) and the type of soil changes significantly between the water table and lower pavement layer because the properties of the soils can have a significant effect on the amount of water being moved through the subgrade—lowering the resilient modulus of the upper soil strata.

#### 8.1.5. Bedrock

For some projects, bedrock or a very stiff layer may be encountered. The maximum thickness of the subgrade above a rigid layer, however, is 100 inches. For depths greater than 10 feet, the bedrock has little impact on the predicted distresses. When bedrock is encountered within 10 feet of the surface, the designer can enter it as a separate layer.

The material properties needed for each layer are discussed in separate sections of this chapter.

### 8.2 PAVEMENT LAYERS FOR RIGID PAVEMENT DESIGN

Inputs in this category primarily define the structural layers of the PCC pavement including the material types and thicknesses (see Figure 8.1). Similar to the process defined in Section 8.1 for flexible pavements, each layer of the trial section is inserted by selecting the material type, the actual material classification, and the thickness. The following provides guidance for setting up the pavement structure used in a rigid pavement analysis.

### 8.2.1. JPCP or CRCP Layers

For new construction, the rigid pavement is limited to one PCC layer and two PCC layers for rehabilitation designs of rigid pavements (PCC overlay and existing PCC layer).

### 8.2.2. Base Layers

GDOT typically uses one type of base layer along a project, which include asphalt stabilized base (25 mm HMA), cement stabilized or treated base, and GAB.

- HMA or Asphalt Stabilized Base Layers: For new construction or reconstruction problems, HMA or stabilized base layers are placed below the PCC slabs and are limited to one layer. The inputs for the asphalt stabilized base layer are the same as for flexible pavements.
- 2. Unbound Granular Aggregate Base Layers: Limit the compacted unbound GAB layers to one for both new and rehabilitation design of rigid pavements. If more than one layer is used within the design strategy combine similar materials, especially any layer that is relatively thin (less than 6 inches). The number of GAB layers of the existing pavement structure for rehabilitation design should coincide with the pavement structure used to backcalculate elastic layer modulus values from deflection basin data.
- 3. Cement Treated Base or Cementitious Layers: No more than one layer of cement, lime, or lime-fly ash stabilized base layer should be used in the analysis. This does not include stabilized subgrade soils, which is covered under the next bullet item.

### 8.2.3. Stabilized Subgrade

No more than one layer of a stabilized subgrade should be considered in the analysis. It is permissible to consider or simulate a stabilized base layer and stabilized subgrade within the same run.

### 8.2.4. Embankment/Foundation Layers or Subgrade

The subgrade should be limited to no more than two layers; a compacted embankment layer and the natural or undisturbed soil. The exception to this recommendation is when a water table is located near the surface (less than 10 ft.) and the type of soil changes significantly between the water table and lower pavement layer because the properties of the soils can have a significant effect on the amount of water being moved through the subgrade—lowering the resilient modulus of the upper soil strata.

The material properties needed for each layer are discussed in separate sections of this chapter.

## 8.3 ASPHALT CONCRETE (AC)

The layer or material properties for the AC or HMA layers are grouped into three categories: volumetric, mechanical, and thermal properties. Example screen shots showing the AC material property inputs are included at the end of this section.

### 8.3.1 Asphalt Layer, Thickness

The thickness for different AC layers needs to be entered into the software. A maximum of three AC layers can be included in the pavement structure simulation, so some AC layers may need to be combined for a specific trial design. Section 8.1 provides discussion on combining different AC layers, while Table 8.1 listed the minimum and maximum AC layer thickness.

### 8.3.2 Mixture Volumetric Properties

The volumetric properties include air voids, effective asphalt binder content by volume, aggregate gradation, mix unit weight, and asphalt grade. Gradation is included under the mechanical properties because it is only used to calculate the dynamic modulus of the mix for input levels 2 and 3. The volumetric properties should represent the mixture after compaction at the completion of construction. Obviously, the project specific values will be unavailable to the designer because the project is yet to be built. These parameters should be available from previous construction records. The following summarizes the recommended input parameters and values for the HMA mixtures.

1. Air voids, effective asphalt content by volume, and unit weight: Use the average values from historical construction records for a particular type of HMA mixture. Table 8.3 includes the volumetric properties based on the target values for common HMA mixtures used in Georgia for the time period of 2012-2014. For higher design level inputs, The University of Georgia (UGA) developed an asphalt volumetric properties databased for 16 different Georgia asphalt mixtures (Kim et al., 2019). The properties are included in the material testing library and can be imported into the PMED software from the material library. The following volumetric equations can be used to estimate the input parameters.

|                                           | Superpave Mixture |         |         |        |       |             |      |  |
|-------------------------------------------|-------------------|---------|---------|--------|-------|-------------|------|--|
| Volumetric Broperty                       | Surface Mixtures  |         |         | Binder | Base  | SIVIA IVIIX |      |  |
| volumetric Property                       | 9.5 mm,           | 9.5 mm, | 12.5 mm | 19 mm  | 25 mm | 12.5        | 19   |  |
|                                           | Type I            | Type II |         |        |       | mm          | mm   |  |
| Average Air Voids, %                      | 6.0               | 6.0     | 6.0     | 6.0    | 6.0   | 6.0         | 6.0  |  |
| Effective Asphalt Content by<br>Volume, % | 10.5              | 10.5    | 10.6    | 9.6    | 9.2   | 12.0        | 11.5 |  |
| Density, pcf                              | 148               | 148     | 148     | 148    | 148   | 152         | 152  |  |

 Table 8.3—Volumetric Properties for Georgia's Dense-Graded Mixtures

## <u>Air Voids, Va:</u>

$$V_{a} = \left(1 - \frac{G_{mb}}{G_{mm}}\right) \times 100 \tag{2}$$

#### Void In Mineral Aggregate, VMA:

$$VMA = 100 - \left(\frac{G_{mb}(P_s)}{G_{se}}\right)$$
(3)

### Effective Asphalt Content by Volume, Vbe:

$$V_{be} = VMA - V_a \tag{4}$$

Where:

- *VMA* = Voids in mineral aggregate.
- $V_{be}$  = Effective asphalt content by volume.
- $G_{mb}$  = Bulk specific gravity of the HMA mixture.
- $G_{mm}$  = Maximum theoretical specific gravity of the HMA mixture.
- $G_{se}$  = Effective specific gravity of the combined aggregate blend.
- $P_s$  = Percentage of aggregate in mix by weight, % (P<sub>s</sub>=100-P<sub>b</sub>).

**Poisson's Ratio:** Use the temperature calculated values from the regression equation included in PMED.

### 8.3.3 Mechanical Properties

Kim (2013) conducted dynamic modulus test on multiple HMA mixtures. UGA later updated this database with 18 additional mixtures (Kim et al., 2019). Table 8.4 depicts the mixtures whose time-temperature dependent dynamic modulus values were acquired for Level 1 design. If data is not available for the project location, Figure 8.2 may be used along with Table 8.4 for regional approximations. The detailed results of both studies are included in the material testing library and can be imported into the PMED software via the material library. For those mixtures and binder grades not relevant to the GDOT materials library, input level 3 values must be entered into the PMED software.

| Region | Binder<br>Grade | NMAS<br>(mm) | Binder Location        | Material File Name            |  |  |
|--------|-----------------|--------------|------------------------|-------------------------------|--|--|
| 1      | 64 22           | 19           | Dalton (Whitefield)    | L*_PG64_19_A_R1               |  |  |
| I      | 04-22           | 25           | Dalton (Whitefield)    | L*_PG64_25_A_R1               |  |  |
|        | 64-22           | 19           | Athens (Clarke)        | L*_PG64_19_A_R2               |  |  |
| 2      | 67-22           | 12.5         | Toccoa (Stephens)      | L*_PG67_12.5_A_R2             |  |  |
|        | 76-22           | 12.5         | Kennesaw (Cobb)        | L*_PG76_12.5_A_R2             |  |  |
|        |                 | 0.5          | Albany (Dougherty)     | L*_PG64_9.5_B_R3-A            |  |  |
|        |                 | 9.5          | Vienna (Dooly)         | L*_PG64_9.5_B_R3-V            |  |  |
|        |                 |              | Forrest Park (Clayton) | L*_PG64_12.5_A_R3-FP          |  |  |
|        | 64-22 12.5      |              | LaGrange (Troup)       | L*_PG64_12.5_A_R3-LG          |  |  |
| 3      |                 |              | Albany (Dougherty)     | L*_PG64_12.5_B_R3             |  |  |
|        |                 | 19           | Vienna (Dooly)         | L*_PG64_19_B_R3               |  |  |
|        |                 | 25           | Vienna (Dooly)         | L*_PG64_25_B_R3               |  |  |
|        | 67-22           | 9.5          | Columbus (Muscogee)    | L*_PG67_9.5_C_R3              |  |  |
|        | 76-22           | 12.5         | Columbus (Muscogee)    | L*_PG76_12.5_C_R3             |  |  |
| 4      | 67.00           | 9.5          | Statesboro (Bulloch)   | L <sup>*</sup> _PG67_9.5_B_R4 |  |  |
| 4      | 01-22           | 12.5         | Statesboro (Bulloch)   | L*_PG67_12.5_B_R4             |  |  |

Table 8.4—HMA Mixtures with Level 1 Dynamic Modulus

Note: The material file name indicates the mixture is included in the GDOT materials library. The exact dynamic modulus values for each temperature and frequency for every mixture are included in Appendix A.



Figure 8.2—HMA Database Collection Regions

Table 8.5 is a matrix of the HMA dense-graded mixtures that are included in the GDOT materials library in relation to the typical binder grades used in Georgia. For those mixtures and binder grades not included in the GDOT materials library, input level 3 values need to be entered into the PMED software.

| Table 0.5—Dilluer Graues | sinder Grades Typically Osed in Georgia's Dense-Graded Mixture |              |         |  |  |  |
|--------------------------|----------------------------------------------------------------|--------------|---------|--|--|--|
| Mix Size Designation     | Asphalt Binder Designation                                     |              |         |  |  |  |
| wix Size Designation     | PG64-22                                                        | PG67-22      | PG76-22 |  |  |  |
| 9.5 mm                   | $\checkmark$                                                   |              |         |  |  |  |
| 12.5 mm                  | $\checkmark$                                                   |              |         |  |  |  |
| 19 mm                    |                                                                |              |         |  |  |  |
| 25 mm                    |                                                                | $\checkmark$ |         |  |  |  |

 Table 8.5—Binder Grades Typically Used in Georgia's Dense-Graded Mixtures

Note: A check mark in the above columns indicates the mixture is included in the GDOT materials library. The average values for the different mixtures are included in Appendix A.

- 2. New HMA mixtures: If an HMA mixture is included in a design strategy that is not included within the materials library, it is recommended that input level 3 inputs be used to estimate the dynamic modulus values. Two options are provided for estimating dynamic modulus using input levels 2 and 3: (1) NCHRP 1-37A (viscosity-based model), and (2) NCHRP 1-40D (dynamic shear rheometer [DSR] based model). Either one can be used but the DSR model was derived from the viscosity-based model. It is recommended that the NCHRP 1-37A viscosity-based model be used for all current designs as the global calibration factors for all HMA predictive equations were determined using this model.
- 3. Existing HMA mixtures: For rehabilitation design of flexible pavements, the dynamic modulus of the existing HMA layers is needed. Rehabilitation input levels 2 and 3 are the same as for new HMA mixtures discussed above. For rehabilitation input level 1, the dynamic modulus values represent the backcalculated elastic modulus values.

Deflection basins should be measured over a range of temperatures, even if the deflection testing is completed within the same day so that the backcalculated elastic layer modulus values can be determined for at least two temperatures: one representing the morning hours and one representing the late afternoon hours. If there is no significant difference between the backcalculated elastic modulus values, one average value can be used.

Two other inputs that are needed include: (1) the frequency of deflection testing—a default value of 20 Hz is recommended; and (2) the temperature representative of the average backcalculated elastic modulus value—the mid-depth temperature of the layer used in the backcalculation process measured during deflection testing.

4. Aggregate gradation: It is needed when input levels 2 or 3 are used for dynamic modulus. Use either the values that are near the mid-range of the project specifications or the average values from previous construction records for a particular type of mix. Table 8.6 includes the gradation or percent passing for the common mixtures used in Georgia. It should be noted that all input levels will require aggregate gradation for the PMED software v2.6.

|                   |                   | SMA Mixtures       |         |               |             |            |        |
|-------------------|-------------------|--------------------|---------|---------------|-------------|------------|--------|
| Sieve Size        | Surface Mixes     |                    |         | Binder<br>Mix | Base<br>Mix | Surface    | Binder |
|                   | 9.5 mm,<br>Type I | 9.5 mm,<br>Type II | 12.5 mm | 19 mm         | 25 mm       | 12.5<br>mm | 19 mm  |
| 1.5 in (37.5 mm)  | 100               | 100                | 100     | 100           | 100         | 100        | 100    |
| 1 in. (25.0 mm)   | 100               | 100                | 100     | 100           | 95          | 100        | 100    |
| 0.75 in. (19 mm)  | 100               | 100                | 99      | 95            | 85          | 100        | 95     |
| 0.5 in. (12.5 mm) | 99                | 99                 | 95      | 82            | 65          | 92         | 60     |
| 3/8 in. (9.5 mm)  | 95                | 95                 | 85      | 70            | 52          | 65         | 52     |
| No. 4 (4.75 mm)   | 75                | 65                 | 58      | 49            | 45          | 24         | 24     |
| No. 8 (2.36 mm)   | 51                | 45                 | 43      | 33            | 33          | 20         | 20     |
| No. 200 (75 µm)   | 6                 | 6                  | 5.8     | 5             | 4.8         | 10         | 9      |

 Table 8.6—Gradation for Georgia's Dense-Graded Mixtures

- Reference temperature: Use 70°F. All of the GDOT calibration factors are tied to this default value.
- 6. Creep compliance and indirect tensile strength: Creep compliance and the indirect tensile strength may be determined in the software using other asphalt material properties such as gradation and binder-related inputs. Therefore, it is recommended that input level 3 be used to estimate these properties until a library of laboratory test results become available. Both the creep compliance and the indirect tensile strength inputs are used for the low temperature cracking transfer function. Because transverse cracking from low temperature events is not that prevalent on Georgia's roadways, GDOT has not yet expended the resources to measure these properties in the laboratory. Recent efforts have been made to acquire this data for appropriate characterization of the load related distresses in future designs.

### 8.3.4 Thermal Properties

- Thermal conductivity of asphalt: Use default value set in program of 0.67 BTU/ft\*h\*°F. All of the GDOT calibration factors are tied to this default value.
- Heat capacity of asphalt: Use default value set in program of 0.23 BTU/lb\*°F. All of the GDOT calibration factors are tied to this default value.
- Coefficient of thermal contraction of the mix: Use default values set in the MOP for different mixtures and aggregates. The PMED software will calculate this value. All of the GDOT calibration factors are tied to the global default values calculated by the software.
## 8.3.5 Screen Shots for the AC Properties: New and Existing Layers

The following are screen shot examples that show the AC material property inputs discussed within this section of Chapter 8. The drop-down arrows are used to access or select specific information and other input values for the project.

## **Overall Screen Shot for the Asphalt Concrete Material Properties**

| Explorer 4 ×                               | 13_4096_2:Project*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                             |                                 |            | -           | ×   |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------|---------------------------------|------------|-------------|-----|
|                                            | General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Performance Criteria                        |                                 | Limit      | Reliability | *   |
| Traffic                                    | Design type: Overlay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -          | Initial IRI (in /mile)                      |                                 | 63         |             |     |
| Climate                                    | Pavement type: AC over AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •          | Terminal IRI (in./mile)                     |                                 | 172        | 50          | =   |
| AC Layer Properties                        | Design life (years): 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •          | AC top-down fatigue cracking (ft/mile)      |                                 | 2000       | 50          |     |
| Laver 1 Flexible : AC Overlav              | Existing construction: June 💌 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85 💌       | AC bottom-up fatique cracking (percent)     |                                 | 25         | 50          |     |
| Layer 2 Flexible : Existing AC 1(existing) | Pavement construction March 👻 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 👻       | AC themal cracking (ft/mile)                |                                 | 1000       | 50          |     |
| Layer 3 Flexible : Existing AC 2(existing) | Traffic opening: April 🔻 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11         | / o from a order and you may                |                                 | 1000       |             |     |
| Laver 4 Non-stabilized Base : Soil Cement  | Special traffic loading for flexible pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | veme       |                                             |                                 | 10.70      |             |     |
| Backcalculation                            | Special traine loading for nexture pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Venices    | Layer T Asphalt Concrete AC Ovenay          |                                 |            |             | × . |
| Project Specific Calibration Factors       | 📲 Add Layer 🗯 Remove Layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |                                 |            |             |     |
| Sensitivity                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                             |                                 |            |             | -   |
| PDE Output Report                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Thickness (in.)                             | ✓ 1.4                           |            |             | 1   |
| Bill Excel Output Report                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Mixture Volumetrics                         | 145                             |            |             |     |
| Multiple Project Summary                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Unit weight (pcf)                           | ✓ 145                           |            |             |     |
| Batch Bun                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Aircraide (%)                               | 9.3                             |            |             | -   |
| E Tools                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Air voids (%)                               | ✓ 8.3                           |            |             |     |
| H ME Design Calibration Factors            | Click bara to adit I aver 1 Elavible : A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C Owner    | Machanical Properties                       | (Calculated)                    |            |             |     |
|                                            | CITCK Here to coil Layer THEAtore . A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Duramic medulue                             | I locat loval:2                 |            |             |     |
|                                            | Click here to edit Layer 3 Flexible : E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xisting A( | Select HMA Estar predictive model           | Lies Viscosity based model (pat | ionally ca | (hoterdile  |     |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Reference temperature (den E)               | 70                              | ionally ca | moracouj.   |     |
|                                            | Click here to edit Layer 4 Non-stabiliz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed Bale    | Asphalt binder                              | Conventional Viscosity AC       | 20         |             |     |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Indirect tensile strength at 14 deg F (psi) | 512.14                          |            |             |     |
|                                            | A CALLER AN A CALLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23         | Creep compliance (1/psi)                    | Input level:3                   |            |             |     |
|                                            | And the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000       | ⊿ Thermal                                   |                                 |            |             |     |
|                                            | Click here to edit Layer 5 Subgrade :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-2-6      | Thermal conductivity (BTU/hr-ft-deg F)      | <ul><li>✓ 0.67</li></ul>        |            |             |     |
|                                            | A State of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 199        | Heat capacity (BTU/lb-deg F)                | ✓ 0.23                          |            |             |     |
|                                            | the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | > Thermal contraction                       | 1.24E-05 (calculated)           |            |             |     |
|                                            | Carter and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |            | 4 Identifiers                               |                                 | _          | _           |     |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Poisson's ratio                             |                                 |            |             |     |

# Asphalt Concrete

| 4 | Asphalt Layer                               |                                                    | * |
|---|---------------------------------------------|----------------------------------------------------|---|
|   | Thickness (in.)                             | ✓ 1.4                                              |   |
| 4 | Mixture Volumetrics                         |                                                    |   |
|   | Unit weight (pcf)                           | ✓ 145                                              |   |
|   | Effective binder content (%)                | 9.3                                                |   |
|   | Air voids (%)                               | ✓ 8.3                                              |   |
| 4 | Poisson's ratio                             | (calculated)                                       |   |
|   | Is Poisson's ratio calculated ?             | True                                               | Ε |
|   | Poisson's ratio                             |                                                    |   |
|   | Poisson's ratio Parameter A                 | ✓ -1.63                                            |   |
|   | Poisson's ratio Parameter B                 | ✓ 3.84E-06                                         |   |
| 4 | Mechanical Properties                       |                                                    |   |
|   | Dynamic modulus                             | Input level:3                                      |   |
| 4 | Select HMA Estar predictive model           | Use Viscosity based model (nationally calibrated). |   |
|   | Using G* based model (not nationally        | False                                              |   |
|   | Reference temperature (deg F)               | ✓ 70                                               |   |
|   | Asphalt binder                              | Conventional Viscosity:AC 20                       |   |
|   | Indirect tensile strength at 14 deg F (psi) | ✓ 512.14                                           |   |
|   | Creep compliance (1/psi)                    | ✓ Input level:3                                    |   |
| 4 | Thermal                                     |                                                    |   |
|   | Thermal conductivity (BTU/hr-ft-deg F)      | ✓ 0.67                                             |   |
|   | Heat capacity (BTU/Ib-deg F)                | ✓ 0.23                                             |   |
| Þ | Thermal contraction                         | 1.24E-05 (calculated)                              |   |
| 4 | Identifiers                                 |                                                    |   |

# Dynamic Modulus; New AC Layer

# Asphalt Binder; Superpave Performance Grade

| Initial IRI (i     | Dynamic modulus input level        | 3                                          | Initial IRI (in./mile)                  | Superpave Performance   | Grade                         |             |
|--------------------|------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------|-------------------------------|-------------|
| Terminal IR        |                                    |                                            | Terminal IRI (in./mile)                 | Viscosity Grade         |                               |             |
| AC top-dow         | Gradation                          | Percent Passing                            | AC top-down fatigue cracking (f         |                         |                               |             |
|                    | 3/4-inch sieve                     | 100                                        |                                         | Penetration Grade       |                               |             |
| Layer 1 As         | 3/8-inch sieve                     | 77                                         | Layer 1 Asphalt Concrete:AC 0           | Binder type:            | 64-28                         | -           |
| 2↓                 | No.4 sieve                         | 60                                         | (20 2↓   20                             |                         |                               |             |
| ⊿ Asph             | No.200 sieve                       | 6                                          | A Asphalt Layer                         | A: 10.312               | VTS: -3.44                    |             |
| Thick              |                                    |                                            | Thickness (in.)                         |                         |                               |             |
| ⊿ Mixtu            |                                    |                                            | Mixture Volumetrics                     |                         |                               |             |
| Unit we            | ignt (pct)                         | 140                                        | Unit weight (pcf)                       | V 143                   |                               |             |
| Effectiv           | e binder content (%)               | 9.3                                        | Effective binder content (?             | () 9.3                  |                               |             |
| Air void           | ls (%)                             | ✓ 8.3                                      | Air voids (%)                           | ✓ 8.3                   |                               |             |
| A Poissor          | n's ratio                          | (calculated)                               | Poisson's ratio                         | (calculated             | d)                            |             |
| ls F               | Poisson's ratio calculated ?       | True                                       | Is Poisson's ratio calc                 | ulated ? True           |                               |             |
| Poi                | sson's ratio                       |                                            | Poisson's ratio                         |                         |                               |             |
| Poi                | sson's ratio Parameter A           | ✓ -1.63                                    | Poisson's ratio Param                   | eter A 🖌 -1.63          |                               |             |
| Poi                | sson's ratio Parameter B           | ✓ 3.84E-06                                 | Poisson's ratio Param                   | eter B 3.84E-           | -06                           |             |
| ⊿ Mecha            | inical Properties                  |                                            | Mechanical Properties                   |                         |                               |             |
| Dynami             | ic modulus                         | ✓ Input level:3                            | Dynamic modulus                         | Input                   | evel:3                        |             |
| ▲ Select H<br>Llei | HMA Estar predictive model         | Use Viscosity based model (nationally call | brated).  A Select HMA Estar prediction | ve model Use Viscos     | ity based model (nationally c | alibrated). |
| Referen            | ce temperature (deg E)             | 70                                         | Defense to a sed mode                   |                         |                               |             |
| Acobalt            | binder.                            | Conventional Viscosity: AC 20              | Reference temperature (de               | sg F) 70                | - U 1 \ K 1 AC 20             | -           |
| Indirect           | tensile strength at 14 dag E (nsi) |                                            | Asphalt binder                          | Id des ⊑ (and)          | ntional viscosity AC 20       | 1.20        |
| Creep o            | compliance (1/nei)                 | Josef Level 3                              | Indirect tensile strength at            | 14 deg F (psi) V 512.14 |                               |             |
| d Thorn            | al                                 |                                            | Creep compliance (1/psi)                |                         | evel:3                        |             |
| Therma             | l conductivity (PTII/br ft dog E)  | 0.67                                       | ⊿ Inermai                               |                         |                               |             |
| Henter             | enconductivity (D10/III-IEdeg F)   |                                            | i nermal conductivity (BT               | J/nr-π-deg F) V.67      |                               |             |
| Thereat            | pacity (b) onb-deg F)              | 1 24E (05 (option distord)                 | Heat capacity (BTU/Ib-deg               | (F) <b>0.23</b>         |                               |             |
| P I nerma          | a contraction                      | 1.24E-US (calculated)                      | Thermal contraction                     | 1.24E-05 (d             | calculated)                   |             |



## Rehabilitation: Existing Asphalt Concrete Layer

# 8.4 PORTLAND CEMENT CONCRETE (PCC) – NEW MIXES

The layer or material properties for the PCC layers are grouped into four categories: general, thermal, mix, and strength properties. Example screen shots showing the PCC material property inputs are included at the end of this section.

A recent study at UGA conducted under RP 18-03 established a database for 12 approved concrete mixtures based on previous projects with similar design characteristics. Table 8.7 provides a summary of the mixture characteristics along with mixture numbers that are referenced throughout this section. The layer or material properties for the PCC mixtures below are recommended for relevant PCC layer designs.

| Mixture<br>No. | Cementitious<br>Content | Fly<br>Ash<br>(%) | Water /<br>Cement<br>ratio | Coarse<br>Aggregate<br>Type | Coarse<br>Aggregate<br>Fraction | GDOT Project Number  |  |
|----------------|-------------------------|-------------------|----------------------------|-----------------------------|---------------------------------|----------------------|--|
| 1              | 541                     | 0                 | 0.431                      | Granite                     | 11.91                           | IM-185-1(326)01      |  |
| 2              | 541                     | 0                 | 0.524                      | Granite                     | 12.75                           | NH-IM-20-2(145)01    |  |
| 3              | 595                     | 0                 | 0.430                      | Granite                     | 11.40                           | EDS00-0072-00(039)   |  |
| 4              | 600                     | 0                 | 0.470                      | Granite                     | 11.62                           | NHS00-0005-00(320)   |  |
| 5              | 580                     | 12.20             | 0.493                      | Granite                     | 12.54                           | NH-IM-20-2(145)01    |  |
| 6              | 579                     | 19.69             | 0.446                      | Granite                     | 11.67                           | CSNHS-M002-00(965)01 |  |
| 7              | 622                     | 26.00             | 0.422                      | Granite                     | 12.14                           | NHS-M002-00(434)01   |  |
| 8              | 605                     | 20.66             | 0.430                      | Dolomite                    | 12.09                           | NHSTP-0075-03(203)   |  |
| 9              | 590                     | 18.64             | 0.438                      | Granite                     | 10.87                           | CSSTP-0007-00(239)01 |  |
| 10             | 590                     | 18.64             | 0.430                      | Dolomite                    | 10.87                           | CSSTP-0007-00(239)01 |  |
| 11             | 600                     | 20.16             | 0.470                      | Granite                     | 11.42                           | IMNH0-0075-01(227)   |  |
| 12             | 600                     | 20.16             | 0.470                      | Granite                     | 11.42                           | IMNH0-0075-01(227)   |  |

Table 8.7—Georgia Concrete Mixture Properties

#### 8.4.1 General Properties

- Thickness: The trial layer thickness needs to be entered for the PCC layer. Table 8.1 listed the minimum and maximum layer PCC thickness.
- 2. Unit weight of PCC: Use the average value from historical construction records for a particular type of PCC mixture or those provided in Table 8.8. In cases where the unit weight is not readily available for the PCC mixes, use a default value of 150 pcf.
- 3. Poisson's ratio: All of the GDOT calibration factors are tied to a default Poisson's ratio of 0.20 because it was unavailable for the PCC mixes included in the LTPP program or for the non-LTPP sections. Ongoing research under RP 18-03 led to the development of Table 8.9, in which Poisson's ratio was recorded for several Georgia concrete mixtures. The below values were not included in the most recent calibration but have not shown to have significant influence on the transfer functions in PMED as they are within the

expected range. As a result, the use of the average value (0.22) versus the default recommendation (0.20) is at the discretion of the designer.

| Mixture No. | Temperature (°F) | Slump<br>(in) | Air (%) | Unit Weight<br>(lb/ft3) |
|-------------|------------------|---------------|---------|-------------------------|
| 1           | 82.4             | 0.50          | 4.9     | 147.2                   |
| 2           | 83.4             | 2.25          | 4.0     | 147.4                   |
| 3           | 73.7             | 3.00          | 6.2     | 144.4                   |
| 4           | 79.3             | 8.50          | 6.1     | 143.0                   |
| 5           | 62.1             | 7.00          | 4.5     | 143.4                   |
| 6           | 74.1             | 6.50          | 5.5     | 141.6                   |
| 7           | 58.6             | 4.25          | 3.1     | 145.2                   |
| 8           | 64.4             | 5.00          | 5.0     | 148.8                   |
| 9           | 66.2             | 0.50          | 4.9     | 145.8                   |
| 10          | 75.4             | 2.50          | 5.9     | 147.2                   |
| 11          | 70.5             | 2.75          | 3.6     | 146.6                   |
| 12          | 85.8             | 2.75          | 4.7     | 146.4                   |

Table 8.8—Georgia Concrete Fresh Mixture Properties

 Table 8.9—Poisson's Ratio for Georgia Concrete Mixtures

|                   |                              | Ag   | Age of Specimen (days) |      |      |      |
|-------------------|------------------------------|------|------------------------|------|------|------|
|                   |                              | 7    | 14                     | 28   | 90   |      |
| Mixture<br>Number | Mixture ID                   |      | Poisson's Ratio        |      |      | AVG  |
| 1                 | 541/0FA/0.431/11.91G/4.9     | 0.21 | 0.22                   | 0.22 | 0.23 | 0.22 |
| 2                 | 541/0FA/0.524/12.75G/4.0     | 0.22 | 0.22                   | 0.22 | 0.23 | 0.22 |
| 3                 | 595/0FA/0.43/11.4G/6.2       | 0.21 | 0.21                   | 0.23 | 0.24 | 0.22 |
| 4                 | 600/0FA/0.47/11.62G/6.1      | 0.22 | 0.21                   | 0.22 | 0.23 | 0.22 |
| 5                 | 580/12.2FA/0.493/12.54G/4.5  | 0.17 | 0.21                   | 0.21 | 0.26 | 0.21 |
| 6                 | 579/19.69FA/0.446/11.67G/5.5 | 0.18 | 0.21                   | 0.20 | 0.24 | 0.21 |
| 7                 | 622/26FA/0.422/12.14G/3.1    | 0.19 | 0.18                   | 0.20 | 0.25 | 0.21 |
| 8                 | 605/20.66FA/0.43/12.09D/5.0  | 0.25 | 0.25                   | 0.26 | 0.27 | 0.26 |
| 9                 | 590/18.64FA/0.438/10.87G/4.9 | 0.17 | 0.20                   | 0.20 | 0.20 | 0.19 |
| 10                | 590/18.64FA/0.439/10.87D/5.9 | 0.20 | 0.24                   | 0.25 | 0.27 | 0.24 |
| 11                | 600/20.16FA/0.47/11.42G/3.6  | 0.20 | 0.22                   | 0.21 | 0.23 | 0.22 |
| 12                | 600/20.16FA/0.47/11.42G/4.7  | 0.22 | 0.21                   | 0.22 | 0.23 | 0.22 |
|                   | Average (AVG)                | 0.20 | 0.22                   | 0.22 | 0.24 | 0.22 |

NOTE: Mixture IDs signify: Cement Content/Fly Ash %/Water-Cement Ratio/CA Fraction/Air Content

### 8.4.2 Thermal Properties

PCC Coefficient of Thermal Expansion (CTE) is a very critical design input that will affect the pavement design. A CTE database was developed using the same 12 concrete mixtures found in the GDOT material library. The average tested CTE values for these mixes are listed in Table 8.10 and may be used for design Level 1. Default Level 2 CTE values are determined based on PCC coarse aggregate geological class. Designers must determine the source of PCC coarse aggregate and thus, the predominant geological class. With this information, select the most appropriate CTE value from the recommendations presented in Table 8.12. If the source of coarse aggregate is unknown, assume granite with the CTE selected from Table 8.11.

| Mixture<br>Number | Mixture ID                   | Average<br>CTE (10 <sup>-6</sup> /°F) |
|-------------------|------------------------------|---------------------------------------|
| 1                 | 541/0FA/0.431/11.91G/4.9     | 4.91                                  |
| 2                 | 541/0FA/0.524/12.75G/4.0     | 4.66                                  |
| 3                 | 595/0FA/0.43/11.4G/6.2       | 5.25                                  |
| 4                 | 600/0FA/0.47/11.62G/6.1      | 5.09                                  |
| 5                 | 580/12.2FA/0.493/12.54G/4.5  | 5.13                                  |
| 6                 | 579/19.69FA/0.446/11.67G/5.5 | 5.17                                  |
| 7                 | 622/26FA/0.422/12.14G/3.1    | 5.31                                  |
| 8                 | 605/20.66FA/0.43/12.09D/5.0  | 5.35                                  |
| 9                 | 590/18.64FA/0.438/10.87G/4.9 | 5.31                                  |
| 10                | 590/18.64FA/0.439/10.87D/5.9 | 5.45                                  |
| 11                | 600/20.16FA/0.47/11.42G/3.6  | 4.97                                  |
| 12                | 600/20.16FA/0.47/11.42G/4.7  | 4.99                                  |
|                   | Average                      | 5.13                                  |

 Table 8.10—CTE for Georgia Concrete Mixtures

NOTE: Mixture IDs signify: Cement Content/Fly Ash %/Water-Cement Ratio /CA Fraction/Air Content

Table 8.11—Recommended CTE Values for PCC Mixtures in Georgia that Contain Type I Portland Cement and Natural Sand (Kim, 2012)

| Coarse Aggregate Type | CTE (10 <sup>-6</sup> /°F) |
|-----------------------|----------------------------|
| Granite               | 5.1                        |
| Dolomite              | 5.1                        |

- Thermal conductivity of PCC: Use default value set in program of 1.25 BTU/ft\*hr\*°F. All of the GDOT calibration factors are tied to this default value.
- Heat capacity of PCC: Use default value set in program of 0.28 BTU/lb\*°F. All of the GDOT calibration factors are tied to this default value.

### 8.4.3 Mix Physical Properties: New and Intact Existing PCC Slabs

The PMED software requires several inputs for the PCC mix physical properties, which are listed below. The default values for these mix properties recommended for use represent the average value from the mixes included in the GDOT calibration.

- Cement type: Most of the GDOT PCC mixtures are produced with Type I Portland cement.
   Type I should be used, unless Type II or III is specified for a specific design. Type I/II
   Portland cement was used for all of the PCC mixtures included in the calibration.
- 2. Cement content: The cement content (plus fly ash content) should be available from historical construction records or provided in Table 8.7 for the different PCC mixtures used in Georgia. A local default value of 660 lb./yd.<sup>3</sup> total cementitious material should be used if information is unavailable to the user.
- Water/Cement ratio: The water-cement ratio is available from historical construction records or Table 8.7 for the different PCC mixtures. A local default value of 0.45 should be used if information is unavailable to the user.
- 4. Coarse aggregate type: The common type of coarse aggregates used in the PCC mixes are listed in Table 8.11. The recommended input for most designs is Granite but Dolomite may be assumed for those counties listed in Table 8.12.

| Location or County     | Coarse Aggregate Type |
|------------------------|-----------------------|
| Dade                   |                       |
| Catoosa                |                       |
| Whitfield              |                       |
| Floyd                  | Dolomite              |
| Polk                   |                       |
| Bartow                 |                       |
| Cherokee               |                       |
| All Remaining Counties | Granite               |

Table 8.12—Recommended PCC Aggregate by Source

5. Zero-stress temperature (new and existing intact PCC): Zero stress temperature (Tz) occurs after placement concrete has cured and hardened sufficiently that the temperature begins to drop, resulting in tensile stress. It can be input directly or calculated by the PMED software from monthly ambient temperature and cement content using the equation 5. It is recommended that the user allow the PMED software to calculate this input parameter.

$$\Gamma z = (CC^{*}0.59328^{*}H^{*}0.5^{*}1000^{*}1.8/(1.1^{*}2400) + MMT)$$
(5)

Where:

- *Tz* = Zero stress temperature (allowable range: 60 to 120 degrees Fahrenheit).
- CC = Cementitious content, lb/yd<sup>3</sup>.
- $H = -0.0787 + 0.007^* MMT 0.00003^* MMT^2$ .

*MMT* = Mean monthly temperature for month of construction, degrees Fahrenheit.

6. Ultimate shrinkage: The ultimate shrinkage can be entered manually or calculated by the software. It is recommended the ultimate shrinkage be calculated by the software, because this value was unavailable for the PCC mixes used in Georgia. All of the GDOT

calibration factors were determined based on the software calculating the ultimate shrinkage.

- Reversible shrinkage: Use default value set in program of 50 percent. All of the GDOT calibration factors are tied to this default value.
- Time to develop 50 percent of ultimate shrinkage: Use default value set in program of 35 days. All of the GDOT calibration factors are tied to this default value.
- 9. Curing method: Two options are available within the software: wet curing or curing compound. Curing compound is typically used for GDOT PCC construction. Thus, it is recommended that curing compound be selected unless the designer knows that wet curing will be used for some reason.

### 8.4.4 Strength Properties

Two mix strength properties are required for using the PMED software: flexural (modulus of rupture) or compressive strength and elastic modulus. Input levels 1 and 2 require time dependent flexural and compressive strengths, respectively, while input level 3 only requires 28-day strength values. Time dependent flexural or compressive strengths were developed by the University of Georgia under RP 18-03 and are provided in the following sections. In cases where these mixtures are irrelevant, input level 3 is recommended for use: 28-day strength and elastic modulus.

 28-Day compressive strength: The median value from historical construction records for the 28-day compressive strength is 6,097 psi. It is recommended this value be used in Level 3 designs. The values provided in Table 8.13 are preferred for Level 1 and 2 designs. The mean flexural strength from the PCC calibration test sections was 705 psi.

|               |                              | Age of Specimen (days)     |       |       |       |                 |
|---------------|------------------------------|----------------------------|-------|-------|-------|-----------------|
|               |                              | 7                          | 14    | 28    | 90    | 20-yr/28<br>day |
| Mix<br>Number | Mixture ID                   | Compressive Strength (psi) |       |       |       |                 |
| 1             | 541/0FA/0.431/11.91G/4.9     | 4,680                      | 5,420 | 6,370 | 6,240 |                 |
| 2             | 541/0FA/0.524/12.75G/4.0     | 4,810                      | 5,440 | 6,300 | 6,680 |                 |
| 3             | 595/0FA/0.43/11.4G/6.2       | 4,410                      | 4,870 | 5,350 | 5,780 |                 |
| 4             | 600/0FA/0.47/11.62G/6.1      | 3,130                      | 3,820 | 4,280 | 4,490 |                 |
| 5             | 580/12.2FA/0.493/12.54G/4.5  | 3,190                      | 3,700 | 4,390 | 5,340 |                 |
| 6             | 579/19.69FA/0.446/11.67G/5.5 | 3,090                      | 3,580 | 4,140 | 5,420 | 1.20            |
| 7             | 622/26FA/0.422/12.14G/3.1    | 4,080                      | 4,610 | 5,420 | 6,650 | 1.20            |
| 8             | 605/20.66FA/0.43/12.09D/5.0  | 4,240                      | 4,920 | 5,700 | 7,450 |                 |
| 9             | 590/18.64FA/0.438/10.87G/4.9 | 4,980                      | 5,980 | 6,650 | 7,940 |                 |
| 10            | 590/18.64FA/0.439/10.87D/5.9 | 4,150                      | 4,450 | 5,220 | 6,570 |                 |
| 11            | 600/20.16FA/0.47/11.42G/3.6  | 4,930                      | 5,640 | 6,020 | 8,130 |                 |
| 12            | 600/20.16FA/0.47/11.42G/4.7  | 3,820                      | 4,520 | 5,190 | 6,950 |                 |

 Table 8.13—Time Dependent Compressive Strength for Georgia Concrete Mixtures

NOTE: Mixture IDs signify: Cement Content/Fly Ash %/Water-Cement Ratio/CA Fraction/Air Content

2. 28-Day Modulus of elasticity: The modulus of elasticity (MOE) can be entered manually or calculated by the program based on the 28-day flexural or compressive strength value. Elastic moduli were acquired through RP 18-03 and presented in Table 8.14. For routine designs, it is recommended that the value be calculated by the software. The average elastic modulus from the PCC calibration test sections was 4,500,000 psi.

|                   |                              | Age of Specimen (days) |                  |       |       |                 |
|-------------------|------------------------------|------------------------|------------------|-------|-------|-----------------|
|                   |                              | 7                      | 14               | 28    | 90    | 20-yr/28<br>day |
| Mixture<br>Number | Mixture ID                   |                        | Static MOE (ksi) |       |       |                 |
| 1                 | 541/0FA/0.431/11.91G/4.9     | 5,100                  | 5,150            | 5,350 | 5,650 |                 |
| 2                 | 541/0FA/0.524/12.75G/4.0     | 4,750                  | 5,100            | 5,600 | 5,850 |                 |
| 3                 | 595/0FA/0.43/11.4G/6.2       | 4,350                  | 4,450            | 4,600 | 5,100 |                 |
| 4                 | 600/0FA/0.47/11.62G/6.1      | 3,650                  | 3,850            | 4,100 | 4,400 |                 |
| 5                 | 580/12.2FA/0.493/12.54G/4.5  | 2,650                  | 2,950            | 3,150 | 3,700 |                 |
| 6                 | 579/19.69FA/0.446/11.67G/5.5 | 2,900                  | 2,950            | 3,200 | 3,650 | 1 20            |
| 7                 | 622/26FA/0.422/12.14G/3.1    | 3,150                  | 3,350            | 3,550 | 4,250 | 1.20            |
| 8                 | 605/20.66FA/0.43/12.09D/5.0  | 5,500                  | 5,950            | 6,400 | 6,600 |                 |
| 9                 | 590/18.64FA/0.438/10.87G/4.9 | 3,550                  | 3,900            | 4,150 | 4,600 |                 |
| 10                | 590/18.64FA/0.439/10.87D/5.9 | 5,400                  | 5,550            | 6,050 | 7,150 |                 |
| 11                | 600/20.16FA/0.47/11.42G/3.6  | 4,950                  | 5,050            | 5,350 | 5,950 |                 |
| 12                | 600/20.16FA/0.47/11.42G/4.7  | 4,350                  | 4,850            | 5,250 | 5,650 |                 |

Table 8.14—Time Dependent Elastic Modulus for Georgia Concrete Mixtures

NOTE: Mixture IDs signify: Cement Content/Fly Ash %/Water-Cement Ratio/CA Fraction/Air Content

3. 28-Day modulus of rupture: The modulus of rupture (MOR) is only required for input level 1 and must be entered manually alongside elastic modulus values. Modulus of rupture values were acquired through RP 18-03 and are presented in Table 8.15. However, MOR specimens were tested using 3x4x16 inch beam sizes and may produce greater MOR values as a result.

|                   |                              | Age of Specimen (days) |     |          |     |                 |  |
|-------------------|------------------------------|------------------------|-----|----------|-----|-----------------|--|
|                   |                              | 7                      | 14  | 28       | 90  | 20-yr/28<br>day |  |
| Mixture<br>Number | Mixture ID                   |                        |     | MOR (psi | )   |                 |  |
| 1                 | 541/0FA/0.431/11.91G/4.9     | 685                    | 705 | 710      | 730 |                 |  |
| 2                 | 541/0FA/0.524/12.75G/4.0     | 640                    | 695 | 725      | 730 |                 |  |
| 3                 | 595/0FA/0.43/11.4G/6.2       | 670                    | 665 | 805      | 690 |                 |  |
| 4                 | 600/0FA/0.47/11.62G/6.1      | 630                    | 630 | 665      | 665 |                 |  |
| 5                 | 580/12.2FA/0.493/12.54G/4.5  | 595                    | 640 | 650      | 720 |                 |  |
| 6                 | 579/19.69FA/0.446/11.67G/5.5 | 615                    | 600 | 620      | 730 | 1 20            |  |
| 7                 | 622/26FA/0.422/12.14G/3.1    | 600                    | 640 | 670      | 720 | 1.20            |  |
| 8                 | 605/20.66FA/0.43/12.09D/5.0  | 615                    | 630 | 660      | 765 |                 |  |
| 9                 | 590/18.64FA/0.438/10.87G/4.9 | 700                    | 700 | 700      | 755 |                 |  |
| 10                | 590/18.64FA/0.439/10.87D/5.9 | 615                    | 645 | 635      | 765 |                 |  |
| 11                | 600/20.16FA/0.47/11.42G/3.6  | 620                    | 730 | 785      | 755 |                 |  |
| 12                | 600/20.16FA/0.47/11.42G/4.7  | 650                    | 640 | 715      | 740 |                 |  |

 Table 8.15—Time Dependent Modulus of Rupture for Georgia Concrete Mixtures

NOTE: Mixture IDs signify: Cement Content/Fly Ash %/Water-Cement Ratio/CA Fraction/Air Content

## 8.4.5 Screen Shots for the PCC Properties: New Layers

The following are screen shot examples that show the PCC material property inputs discussed within this section of Chapter 8. The drop-down arrows are used to access or select specific information and other input values for the project.

### **Overall Screen Shot for the PCC Material Properties**



# **PCC Material Properties**

| Lay | er 1 PCC;JPCP                                       |                                       |   |
|-----|-----------------------------------------------------|---------------------------------------|---|
| •   | ]≙↓                                                 |                                       |   |
| 4   | PCC                                                 |                                       |   |
|     | Thickness (in.)                                     | ✓ 9.9                                 | 1 |
|     | Unit weight (pcf)                                   | ✓ 150                                 |   |
|     | Poisson's ratio                                     | <ul><li>✓ 0.2</li></ul>               |   |
| 4   | Thermal                                             |                                       |   |
|     | PCC coefficient of thermal expansion (in./in./deg F | <b>√</b> 4.48                         |   |
|     | PCC thermal conductivity (BTU/hr-ft-deg F)          | ✓ 1.25                                |   |
|     | PCC heat capacity (BTU/lb-deg F)                    | ✓ 0.28                                |   |
| 4   | Mix                                                 |                                       | 1 |
|     | Cement type                                         | Type II (2)                           |   |
|     | Cementitious material content (Ib/yd^3)             | ✓ 517                                 |   |
|     | Water to cement ratio                               | <ul><li>✓ 0.47</li></ul>              |   |
|     | Aggregate type                                      | Granite (3)                           |   |
| 4   | PCC zero-stress temperature (deg F)                 | Calculated                            |   |
|     | Calculated internally?                              | True                                  |   |
|     | User-specified PCC set temperature                  |                                       |   |
| 4   | Ultimate shrinkage (microstrain)                    | 537.9 (calculated)                    |   |
|     | Calculated internally?                              | True                                  |   |
|     | User-specified PCC ultimate shrinkage               |                                       |   |
|     | Reversible shrinkage (%)                            | ✓ 50                                  |   |
|     | Time to develop 50% of ultimate shrinkage (days)    | ✓ 35                                  |   |
|     | Curing method                                       | Curing Compound                       |   |
| 4   | Strength                                            |                                       |   |
|     | PCC strength and modulus                            | Level:3 Rupture(600) Modulus(2886322) |   |
| 4   | Identifiers                                         |                                       |   |

# PCC Strength and Modulus

| 4 | PCC                                                                                                                           |                                            |            |                                                        |                   |  |
|---|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|--------------------------------------------------------|-------------------|--|
|   | Thickness (in.)                                                                                                               |                                            | 1          | 9.9                                                    | [                 |  |
|   | Unit weight (pcf)                                                                                                             |                                            | -          | 150                                                    |                   |  |
|   | Poisson's ratio                                                                                                               | PCC streng                                 | yth in     | put level                                              | 3                 |  |
| 4 | Thermal<br>PCC coefficient of thermal expansion (<br>PCC thermal conductivity (BTU/hr-ft-d<br>PCC heat capacity (BTU/b-deg F) | <ul> <li>28-Day</li> <li>28-Day</li> </ul> | PCC<br>PCC | modulus of rupture (psi)<br>compressive strength (psi) | 600               |  |
| 4 | Mix<br>Cement type<br>Cementitious material content (Ib/yd^3                                                                  | 💟 28-Day                                   | PCC        | elastic modulus (psi)                                  | 2886322           |  |
|   | Water to cement ratio                                                                                                         |                                            |            | 0.47                                                   |                   |  |
|   | Aggregate type                                                                                                                |                                            | Gra        | anite (3)                                              |                   |  |
| 4 | PCC zero-stress temperature (deg F)                                                                                           |                                            |            | Calculated                                             |                   |  |
|   | Calculated internally?                                                                                                        |                                            |            | Je                                                     |                   |  |
|   | User-specified PCC set temperatu                                                                                              | re                                         |            | ]                                                      |                   |  |
| 4 | Ultimate shrinkage (microstrain)                                                                                              |                                            |            | 537.9 (calculated)                                     |                   |  |
|   | Calculated internally?                                                                                                        |                                            | Tn         | Je                                                     |                   |  |
|   | User-specified PCC ultimate shrin                                                                                             | kage                                       |            | ]                                                      |                   |  |
|   | Reversible shrinkage (%)                                                                                                      |                                            |            | ✓ 50                                                   |                   |  |
|   | Time to develop 50% of ultimate shrink                                                                                        | age (days)                                 | 1          | 35                                                     |                   |  |
|   | Curing method                                                                                                                 |                                            | Cu         | ring Compound                                          |                   |  |
| 4 | Strength                                                                                                                      |                                            |            |                                                        |                   |  |
|   | PCC strength and modulus                                                                                                      |                                            | 1          | Level:3 Rupture(600) Ma                                | odulus(2886322) 💌 |  |
| 4 | Identifiers                                                                                                                   |                                            |            |                                                        |                   |  |

# **Cement Type**

| 4 | Mix                                              |                    |
|---|--------------------------------------------------|--------------------|
|   | Cement type                                      | Type I (1)         |
|   | Cementitious material content (Ib/yd^3)          | Type I (1)         |
|   | Water to cement ratio                            | Type II (2)        |
|   | Aggregate type                                   | Type III (3)       |
| ⊳ | PCC zero-stress temperature (deg F)              |                    |
| ⊳ | Ultimate shrinkage (microstrain)                 | 632.8 (calculated) |
|   | Reversible shrinkage (%)                         | ✓ 50               |
|   | Time to develop 50% of ultimate shrinkage (days) | ✓ 35               |
|   | Curing method                                    | Curing Compound    |

# Aggregate Type

|                  | Aggregate type                                   | Dolomite (2)  |
|------------------|--------------------------------------------------|---------------|
| $\triangleright$ | PCC zero-stress temperature (deg F)              | Quartzite (0) |
| $\triangleright$ | Ultimate shrinkage (microstrain)                 | Limestone (1) |
|                  | Reversible shrinkage (%)                         | Dolomite (2)  |
|                  | Time to develop 50% of ultimate shrinkage (days) | Granite (3)   |
|                  | Curing method                                    | Rhyolite (4)  |

# **Curing Method**

|   | Time to develop 50% of ultimate shrinkage (days) | ✓ 35            |
|---|--------------------------------------------------|-----------------|
|   | Curing method                                    | Curing Compound |
| ⊿ | Strength                                         | Wet Curing      |
|   | PCC strength and modulus                         | Curing Compound |
| ⊿ | Identifiers                                      |                 |

# 8.5 PORTLAND CEMENT CONCRETE (PCC) – EXISTING FOR REHABILITATION

## DESIGNS

# 8.5.1 Existing Intact PCC Slabs

Existing intact PCC properties are required for HMA overlay, unbonded PCC overlay and for concrete pavement restoration. Example screen shots showing the PCC material property inputs are included at the end of this section, primarily for the fractured slab condition. The PCC properties are the same as for new PCC mixes with the following exceptions.

The designer must assess the overall condition of the existing pavement PCC. Select typical modulus of elasticity values from the range of values given in Table 8.16 based on the amount of cracking (all types including longitudinal, transverse, corner, diagonal) of the existing PCC slabs.

| able 0.10 Recommended Encetive modulus values for Existing indeer 00 old |                             |                        |  |  |  |
|--------------------------------------------------------------------------|-----------------------------|------------------------|--|--|--|
| Qualitative Description of<br>Pavement Condition                         | Typical Modulus Ranges, psi | Mean Modulus, psi      |  |  |  |
| Good/Adequate:<br>(10 to 20 percent cracked slabs)                       | 2 to 4 x 10 <sup>6</sup>    | 3.0 x 10 <sup>6</sup>  |  |  |  |
| Marginal:<br>(20 to 50 percent cracked slabs)                            | 1 to 2 x 10 <sup>6</sup>    | 1.6 x 10 <sup>6</sup>  |  |  |  |
| Poor/inadequate:<br>(>50 percent cracked slabs)                          | 0.2 to 1 x 10 <sup>6</sup>  | 0.65 x 10 <sup>6</sup> |  |  |  |

Table 8.16—Recommended Effective Modulus Values for Existing Intact PCC Slabs

NOTE: For backcalculation of PCC slab elastic modulus for uncracked slabs, the resulting modulus value is essentially a dynamic value that must be reduced by multiplying by 0.8 to obtain a static value to input into the Pavement ME.

## 8.5.2 Fractured PCC Slabs

Existing fractured PCC properties are required for HMA or PCC overlays over fractured PCC pavements. GDOT does not routinely consider fracturing PCC slabs as part of their rehabilitation strategies. Guidance and the recommended input values for fractured PCC slabs are provided for future considerations. The two common methods of fracturing JPCP slabs include: crack and seat and rubblization.

Of the two, the most effective to minimize reflection cracking is rubblization where the PCC slabs are broken into aggregate-sized pieces (less than 6 inches in diameter) that behave similar to a high-quality crushed aggregate layer. The PMED software can be used directly to design an HMA overlay of rubblized concrete similar to a flexible pavement design.

Crack and seat involves cracking the slab into larger pieces (e.g., 3 to 6 ft. pieces) where the key design approach is to provide adequate HMA thickness to reduce deflections in the cracked JPCP

to prevent the pieces from becoming loose and rocking which leads to reflection cracking. The PMED software cannot be used to directly design a crack and seat project because HMA over a cracked and seated slab behaves totally different than a flexible pavement. Only the selection of a very conservative modulus of the cracked slab can obtain a reasonable design (the program does not model reflection cracking originating from crack and seated PCC pieces). Thus, it is recommended to assume conservative reflection cracking values to predicted transverse cracking values. The elastic modulus of the fractured PCC slabs should be selected in accordance with the values in Table 8.17.

Table 8.17—Recommended Modulus Values for Fractured and Rubblized PCC Slabs

| Fractured PCC Type                              | Elastic Modulus, psi |
|-------------------------------------------------|----------------------|
| Rubblized (into crushed granular like material) | 50,000               |
| Crack and seat                                  | 100,000              |

# 8.5.3 Screen Shots for the Fractured PCC Properties

The following are screen shot examples that show the PCC material property inputs for the fractured slabs, as discussed within this section of Chapter 8. The drop-down arrows are used to access or select specific information and other input values for the project.

## **Overall Screen Shot for the JPCP Fractured Slabs**

| Explorer 🛛 🗘 🗙                    | 13_7028_3:Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ject                                                                                                           |                                                    |                           |                    | • X         |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------|--------------------|-------------|
| Projects                          | General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | Performance Criteria                               |                           |                    | Reliability |
| E                                 | Design type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Overlay 👻                                                                                                      | Initial IRI (in /mile)                             |                           |                    |             |
| Climate                           | Pavement type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AC over JPCP (fractured)                                                                                       | Terminal IBI (n /mile)                             |                           | 172                | 90          |
| AC Layer Properties               | Design life (years):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC over AC<br>AC over JPCP<br>AC over CRCP                                                                     | AC top-down fatious cracking (ft/mile)             |                           | 2000               | 90          |
| Pavement Structure                | Base construction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                | AC bottomum fatigue cracking (percent)             |                           | 25                 | 90          |
| Layer 2 Sandwich/Fractured : Fra  | Pavement construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AC over JPCP (fractured)                                                                                       | AC thermal cracking (ft (mile)                     |                           | 1000               | 90          |
| Layer 3 Non-stabilized Base : A-1 | Traffic opening:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bonded PCC/JPCP                                                                                                | Permanent defermation, total enverset (n.)         |                           | 0.75               | 00          |
|                                   | Consist traffic la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JPCP over CRCP (unbonded)                                                                                      | Permanent deformation - total pavement (m.)        |                           | 0.75               | 00          |
| Sensitivity                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JPCP over JPCP (unbonded)                                                                                      | Permanent derormation - AC only (in.)              |                           | 0.25               | 50          |
| Optimization                      | 🛛 🛶 Add Layer 💥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRCP over JPCP (unbonded)                                                                                      |                                                    |                           |                    |             |
| PDF Output Report                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JPCP over AC<br>CRCP over AC                                                                                   | Layer 1 Asphalt Concrete:Default asphalt concrete  |                           |                    | •           |
| Multiple Project Summary          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                    |                           |                    |             |
| 🔁 Batch Run                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | A Asphaltiaver                                     |                           |                    |             |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | Thickness (in.)                                    | ✓ 10                      |                    | <u> </u>    |
| H- ME Design Calibration Factors  | Click here to edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Layer 1 Flexible : Default asphalt concr                                                                       | Mixture Volumetrics                                |                           |                    |             |
|                                   | Strate -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AN COMPANY                                                                                                     | Unit weight (pcf)                                  | 150                       |                    | E           |
|                                   | TO ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TT THE ME                                                                                                      | Lifective binder content (%)<br>Air voids (%)      | ✓ 11.6<br>✓ 7             |                    |             |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | <ul> <li>Poisson's ratio</li> </ul>                | 0.35                      |                    |             |
|                                   | Click here to edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Laver 2 Sandwich/Fractured : Fractures                                                                         | Mechanical Properties                              |                           |                    |             |
|                                   | The start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a stand of the                                                                                                 | Dynamic modulus                                    | ✓ Input level:3           | and a state of the | C. B. Carlo |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | Reference temperature (deg E)                      | Viscosity based model (n  | ationally          | calibrate   |
|                                   | Click here to edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Layer 3 Non-stabilized Base : A-1-a                                                                            | Asphalt binder                                     | X Select Binder           |                    |             |
|                                   | Carl And And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | Indirect tensile strength at 14 deg F (psi)        | 388.87                    |                    |             |
|                                   | Click here to edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Laver 4 Subgrade : A-6                                                                                         | Creep compliance (1/psi)                           | Input level:3             |                    |             |
|                                   | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | March 1 and I wanted                                                                                           | Display name/identifier                            |                           |                    |             |
|                                   | The the stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the second state                                                                                               | Display name of object/material/project for output | s and graphical interface |                    |             |
|                                   | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | the second second second second second second second second second second second second second second second s |                                                    |                           |                    |             |

## Fractured JPCP Layer Properties

| 📲 Add Layer 	 🇱 Remove Layer                                                                        | Layer 2 Sandwich/Fractured : Fractured JPCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •       |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                     | <b>2</b> ↓   □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| Click here to edit Layer 1 Flexible : Default asphalt concrete                                      | Image: Signal Strength         Image: Signal Strength         Elastic/resilient modulus (psi)         Image: Signal Strength         Image: Signal Strength      < | P<br>ai |
| Click here to edit Layer 3 Non-stabilized Base : A-1-a<br>Click here to edit Layer 4 Subgrade : A-6 | Author AASHTO<br>Date created 1/1/2011<br>Approver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|                                                                                                     | Date approved 1/1/2011<br>State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *       |

# 8.6 UNBOUND AGGREGATE BASE MATERIALS AND SOILS

The material properties needed for the unbound aggregate base or subbase layer and embankment or subgrade soils are the same in the PMED software for flexible and rigid pavement designs. Example screen shots showing the unbound aggregate base and subgrade soil or embankment material property inputs are included at the end of this section.

The GDOT materials library includes one file for each of the different unbound base materials typically used in construction and one file for each of the major GDOT soil classifications found in Georgia. The following subsections simply describe the properties included in these files.

## 8.6.1 General Physical and Volumetric Properties

The following unbound layer and embankment soil properties are site specific and easily determined from laboratory tests. Table 8.18 depicts the typical material properties for standard GDOT soil classifications.

- 1. Gradation of the material.
- 2. Atterberg limits tests.
- 3. Specific gravity.
- 4. Maximum dry density or the in-place density at the time of construction.
- 5. Optimum water content or the in-place water content at the time of construction.

|          |                    |           |           |           | Input      | t Properti      | es               |                     |                        |
|----------|--------------------|-----------|-----------|-----------|------------|-----------------|------------------|---------------------|------------------------|
| Material | Percent Passing, % |           |           |           |            |                 |                  | Maximum             | Optimum                |
| Name     | No.<br>4           | No.<br>10 | No.<br>40 | No.<br>60 | No.<br>200 | Liquid<br>Limit | Plastic<br>Limit | Dry Density,<br>pcf | Water<br>Content,<br>% |
| IA1      | 100                | 99.5      | 70.1      | 46.2      | 13.1       | 25              | 9                | 118                 | 10.7                   |
| IA2      | 100                | 99.7      | 70.7      | 48.0      | 14.7       | 23              | 7                | 116                 | 12.6                   |
| IA3      | 100                | 99.5      | 75.4      | 55.5      | 12.7       | 25              | 9                | 106                 | 14.5                   |
| IIB1     | 100                | 100       | 73.9      | 52.2      | 23.9       | 25              | 9                | 122                 | 9.9                    |
| IIB2     | 100                | 99.3      | 72.8      | 55.0      | 29.0       | 28              | 9                | 118                 | 11.5                   |
| IIB3     | 100                | 98.8      | 75.9      | 59.9      | 34.6       | 23              | 7                | 112                 | 14.4                   |
| IIB4     | 100                | 99.1      | 80.2      | 66.8      | 41.4       | 39              | 13               | 100                 | 19.1                   |

Table 8.18—Material Library Subgrade Properties

For the GAB layers, all default layer properties included in the PMED software for a Crushed Stone Base should be assumed, except for resilient modulus, optimum water content, and maximum dry density. Predefined GAB material files have been developed for the GDOT library using the information found in Table 8.18 and Appendix C. These values represent the recommended values for different GAB materials used in Georgia.

A subsurface investigation or soil survey should be planned to determine the above inputs for the project. If a soil survey and/or pavement investigation is not completed prior to design, the geotechnical engineer can provide values for these inputs based on historical information. The geotechnical engineer should be consulted to determine representative values for each design segment along the project.

- For the soils that are not disturbed during construction, the in-place moisture content and dry density should be entered.
- For the crushed gravel and other aggregate base materials used in Georgia or the embankment soils that are compacted, the mid-range of the specifications or construction data from previous projects can be used to determine the input values. The expected moisture content and dry density after compaction should be entered.

#### 8.6.2 Resilient Modulus

Kim (2013) conducted repeated load resilient modulus tests on typical aggregate base materials used in Georgia and on the more common soils encountered in Georgia through RP 12-07. Resilient modulus tests can also be determined from Dynamic Cone Penetrometer (DCP) tests and physical properties of the material/soil, which is input level 2.

For new alignments or new designs, as well as rehabilitation designs, Tables 8.19 and 8.20 provide the suggested mean value and the range of those values for the different unbound

114

materials that were used in the calibration refinement for Georgia and derived from the repeated load resilient modulus tests for the granular aggregate base and subgrade soils, respectively.

|       | Type of Mater     | ial or Soil       | Ontimum Water | Maximum Drv  | Typical Mean              |
|-------|-------------------|-------------------|---------------|--------------|---------------------------|
| Group | broup Source Type |                   | Content, %    | Density, pcf | Resilient<br>Modulus, psi |
|       | NA*               | Recycled Concrete | 11.2          | 121.0        | 25,000                    |
|       |                   |                   |               |              |                           |
|       | Lithonia          | Granite Gneiss    | 5.7           | 133.9        | 25,000                    |
|       | Stockbridge       | Granite Gneiss    | 5.9           | 134.2        | 21,000                    |
|       | Columbus          | Granite Gneiss    | 6.0           | 137.6        | 20,000                    |
|       | Dahlonega         | Granite Gneiss    | 5.6           | 135.2        | 17,000                    |
|       | Gainesville       | Mylonitic Gneiss  | 6.0           | 136.6        | 20,000                    |
|       | Hitchcock         | Mylonitic Gneiss  | 6.2           | 141.2        | 22,000                    |
|       | Walton County     | Biotite Gneiss    | 6.4           | 135.0        | 22,000                    |
|       | Default Values    | All Gneiss GAB    | 6.0           | 136.5        | 23,000                    |
|       |                   |                   |               |              |                           |
| I     | Dalton            | Limestone         | 6.6           | 142.5        | 22,000                    |
| II    | Demorest          | Meta Sandstone    | 5.3           | 137.4        | 18,000                    |
| I     | Mayo Mine         | Limerock          | 13.6          | 112.6        | 25,000                    |

Table 8.19—Resilient Modulus Values for Granular Aggregate Base Materials in Georgia

\* Not Applicable.

### Table 8.20—Resilient Modulus Values Derived for Selected Subgrade Soils in Georgia

| Τı                    | pe of Material o | r Soil       | Optimum             | Maria David  | Typical Mean              |
|-----------------------|------------------|--------------|---------------------|--------------|---------------------------|
| Location or<br>County | GA Soil Class    | AASHTO Class | Water<br>Content, % | Density, pcf | Resilient<br>Modulus, psi |
| Default               |                  | A-1-a        | 7.4                 | 127.2        | 18,000                    |
| Toombs                | IA1              | A-1-b        | 11.9                | 119.3        | 13,000                    |
| Default               |                  | A-1-b        | 9.1                 | 123.7        | 18,000                    |
| Lowndes               | IIB2             | A-2-4        | 4.7                 | 113.1        | 17,000                    |
| Washington            | IIB2             | A-2-4        | 11.0                | 117.8        | 18,000                    |
| Default               |                  | A-2-4        | 9.0                 | 124.0        | 16,500                    |
| Franklin              | IIB3             | A-2-4        | 22.6                | 105.1        | 5,000                     |
| Default               |                  | A-2-5        | 10.1                | 121.9        | 16,000                    |
| Default               |                  | A-2-6        | 10.0                | 121.9        | 16,000                    |
| Coweta                | IIB3             | A-2-7        | 16.7                | 105.3        | 9,000                     |
| Chatham               | IIB4             | A-2-4        | 12.7                | 97.4         | 15,000                    |
| Default               |                  | A-2-7        | 10.6                | 120.8        | 16,000                    |
| Default               |                  | A-3          | 7.3                 | 120.0        | 16,000                    |
| Default               |                  | A-4          | 11.8                | 118.4        | 15,000                    |
| Lincoln               | IIB4             | A-4          | 23.5                | 93.4         | 8,000                     |
| Default               |                  | A-5          | 11.4                | 119.2        | 8,000                     |
| Default               |                  | A-6          | 17.1                | 107.9        | 14,000                    |
| Default               |                  | A-7-5        | 20.0                | 102.0        | 10,000                    |
| Walton                | IIB4             | A-7-6        | 16.8                | 104.8        | 10,000                    |
| Default               |                  | A-7-6        | 22.2                | 97.7         | 9 000                     |

NOTE: The optimum water content and maximum dry density listed in this table were determined using the Modified Proctor compaction effort.

Where Table 8.20 is not applicable, Figure 8.3 may be used to determine an appropriate subgrade classification to use for input level 2 and 3 designs based on your project location. Subgrade material files of the same name in the GDOT library include a typical resilient modulus value for that region along with the particle size distribution, maximum dry density, and optimum moisture content. The properties for each material classification are summarized in Table 8.18.



Figure 8.3—Subgrade Classification and Modulus Inputs by County

For rehabilitation/reconstruction designs, the resilient modulus of each unbound layer and embankment can be backcalculated from deflection basin data (input level 1) or estimated from DCP and other physical properties of the soil (input level 2). If the resilient modulus values are determined by backcalculating elastic layer modulus values from deflection basin tests, those values need to be adjusted to laboratory conditions. Table 8.21 lists the adjustment ratios that should be applied to the unbound layers for use in design. More importantly, the in-place water content and dry density need to be entered in the PMED software when the in place resilient modulus values are used.

GDOT generally does not use the Dynamic Cone Penetrometer (DCP) for pavement evaluations and in estimating the resilient modulus of the unbound materials and soils. However, the DCP (ASTM D6951/D6951M-18) was used in the field investigation of all non-LTPP roadway segments included in the local calibration process. Equation 6 was used to calculate the resilient modulus from the penetration rate measured with a standard 17.6-lb (8-kg) DCP and may be applied to fine- and coarse-grained soils, granular construction materials, and weak stabilized or modified materials. It is suggested that the DCP be considered for future use for rehabilitation design for the unbound pavement layers and subgrade, especially when FWD deflection basin data are unavailable.

$$M_{R} = 17.6 \left(\frac{292}{(DPI)^{1.12}}\right)^{0.64} (C_{DCP})$$
(6)

Where:

 $M_R$  = Resilient modulus of unbound material, MP<sub>a</sub>.

*DPI* = Penetration rate or index, mm/blow.

 $C_{DCP}$  = Adjustment factor for converting the elastic modulus to a laboratory resilient modulus value.

The resilient modulus values can be estimated from the DCP tests using equation 6, but those values need to be adjusted to laboratory conditions. Table 8.21 provides the adjustment factors recommended for use in estimating resilient modulus from the DCP penetration rate. (It should be noted and understood that the PMED does not adjust the resilient modulus values calculated from the DCP and the values in Table 8.21 have not been field verified for GDOT).

Table 8.21—Resilient Modulus Values Derived for Subgrade Soil from DCP Tests for Use in Georgia

| in every in                          |                                            |                                      |                                     |  |  |  |
|--------------------------------------|--------------------------------------------|--------------------------------------|-------------------------------------|--|--|--|
| Material/Soil Class                  |                                            | Condition                            | Adjustment Factor, C <sub>DCP</sub> |  |  |  |
| Fine-Grained; Low<br>Plasticity Soil | Clay-Silt                                  | Above Optimum Water<br>Content       | 1.90                                |  |  |  |
|                                      | Soil-Sand Mix                              | At or Below Optimum<br>Water Content | 1.05                                |  |  |  |
|                                      | Soil-Aggregate Mix<br>with Large Aggregate | At or Below Optimum<br>Water Content | 0.60                                |  |  |  |
| Coarse-Grained<br>Material           | Soil-Aggregate Mix                         | At or Below Optimum<br>Water Content | 0.60                                |  |  |  |
|                                      | Crushed Aggregate                          | At or Below Optimum<br>Water Content | 1.04                                |  |  |  |

The resilient modulus of aggregate or granular base/subbase is dependent on the resilient modulus of the supporting layers. As a rule of thumb, the resilient modulus entered into PMED for a granular base layer should be less than three times the resilient modulus of the supporting layer to avoid decompaction of that layer. This layer modulus ratio is dependent on the type of base and thickness of the base layer.

Table 8.22—Summary of the Adjustment Factors Recommended for Use in Georgia to Convert Backcalculated Layer Modulus Values to Laboratory Equivalent Modulus Values

| Lover & Meterial               |                                                                 | Adjustment Factor, (M <sub>R</sub> /E) |               |  |
|--------------------------------|-----------------------------------------------------------------|----------------------------------------|---------------|--|
| Type                           | Layer Description                                               | FHWA<br>Pamphlet                       | Georgia Sites |  |
| Aggregate Base<br>Layers       | Granular base under a Portland Cement<br>Concrete (PCC) surface | 1.32                                   |               |  |
|                                | Granular base under a CAM layer, semi-rigid pavement            |                                        | 0.75          |  |
|                                | Granular base above a stabilized material (a Sandwich Section)  | 1.43                                   |               |  |
|                                | Granular base under an HMA surface or base                      | 0.62                                   | 0.60          |  |
|                                | Soil under a CAM layer, no granular base                        |                                        | 1.00          |  |
| Quile sure de                  | Soil under a semi-rigid pavement with a granular base/subbase   |                                        | 0.50          |  |
| Subgrade<br>Soil/Eoundation    | Soil Under a Stabilized Subgrade                                | 0.75                                   |               |  |
| Soli/Foundation                | Soil under a full-depth HMA pavement                            | 0.52                                   |               |  |
|                                | Soil under flexible pavement with a granular base/subbase       | 0.35                                   | 0.50          |  |
| Cement Aggregate<br>Base Layer | Cement stabilized or treated aggregate layers                   |                                        | 1.50          |  |
|                                | HMA surface and base layers, 41 °F                              | 1.00                                   | 0.9           |  |
| HMA Mixtures                   | HMA surface and base layers, 77 °F                              | 0.36                                   | 0.6           |  |
|                                | HMA surface and base layers, 104 °F                             | 0.25                                   | 0.5           |  |

Finally, the optimum water content is generally provided for the different unbound materials and soils encountered along a project and may also be used as a means to estimate resilient modulus. Figure 8.4 can be used to adjust the resilient modulus of the unbound aggregate base layer to ensure that it is in agreement with the above rule of thumb. Note that as the base comprises a single layer, only a single adjustment based on base layer thickness and subgrade resilient modulus is required.



Figure 8.4—Estimating the Resilient Modulus from the Optimum Water Content

## 8.6.3 Poisson's Ratio

Poisson's ratio is another input parameter needed for the unbound materials and soils. Table 8.23 lists the values that were used during the regional calibration refinement effort and are recommended for use in future design runs.

| GDOT Soil<br>Class | Description                                                                                                                                |      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| IA1 to IA2         | Medium to well-graded sand or clayey sand                                                                                                  | 0.40 |
| IA3                | Fine-grained, silty, or clayey sand                                                                                                        | 0.40 |
| IIB4               | High plasticity fine-grained soils (clays and silts).                                                                                      | 0.45 |
| IIB2 to IIB3       | Low plasticity fine-grained soils (clays and silts).                                                                                       | 0.40 |
| IIB1 or Better     | Non-plastic or low plasticity fine-grained soil or coarse-grained soil with more than 35 percent fines or material passing the #200 sieve. | 0.35 |
| IIIC1              | High plasticity and expansive clay soils.                                                                                                  | 0.45 |
| I or Base          | Soil-Aggregate base materials which are predominately coarse-<br>grained.                                                                  | 0.35 |
| GAB                | Crushed gravel or crushed stone base materials used as a base or subbase layer.                                                            | 0.30 |

 Table 8.23—Poisson's Ratio Suggested for Use for Unbound Layers

## 8.6.4 Hydraulic Properties

The other input parameters for the unbound layers are more difficult to measure and were not readily available for use in the regional calibration refinement effort. For these inputs, the default values recommended for use in the MOP Second Edition were used to predict the distresses. Therefore, the MOP default values are also recommended for use in Georgia for the following properties.

- 1. Soil saturated hydraulic conductivity.
- 2. Soil-water characteristic curves.



Layers

### 8.6.5 Screen Shots for the Unbound Base and Subgrade Layer Properties

The following are screen shot examples that show the unbound base and subgrade layer property inputs, as discussed within this section of Chapter 8. The material and layer properties are the same between the aggregate base and subgrade or embankment layers. The drop-down arrows are used to access or select specific information and other input values for the project.

#### **Overall Screen Shot for the Unbound Layers**



### Resilient Modulus Drop Down Arrow

#### Sieve; Gradation & Other Engineering Properties Drop Down Arrow

| Analysis Typ               | ies                                  | 1 |
|----------------------------|--------------------------------------|---|
| Modify                     | input values by temperature/moisture |   |
| <ul> <li>Annual</li> </ul> | representative values                | I |
| Mathadi                    | Resilient modulus (psi)              |   |
| method:                    |                                      | 1 |
| INEUROD.                   |                                      |   |

| Sieve Size         | Percent Passing | Liquid Limit               |                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|-----------------|----------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.001mm            |                 | - Plasticity Index         |                   | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.002mm            |                 |                            |                   | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.020mm            |                 | Is layer compacted?        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #200               | 40.9            | Maximum dry unit weight (  | pcf)              | 115.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| #100               |                 | Saturated hydraulic conduc | ctivity (ft/hr)   | 1.652e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| #80                | 50              |                            |                   | Contract of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
| #60                |                 | Specific gravity of solids |                   | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| #50                |                 | Optimum gravimetric wate   | r content (%)     | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #40                | 63.5            | User-defined Soil Water Cl | haracteristic (   | Curve (SWCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| #30                |                 |                            | lu                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #20                |                 | af                         | 108.110624        | 1378064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| #16                |                 | bf                         | 0.682041508785619 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #10                | 84.5            | cf                         | 0.218082052960716 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #8                 |                 | hr                         | 500               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #4                 | 88              |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3/8-in.            | 93              |                            | _                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1/2-in.            | 96              |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3/4-in.            | 99              |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 <del>.</del> in. | 100             |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 1/2-in.          | 100             |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2-in.              | 100             |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 1/2-in.          |                 |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3-in.              | 100             |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3 1/2-in.          |                 |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## 8.7 CEMENT AGGREGATE BASE MIXTURES

The compressive strength (modulus of rupture), elastic modulus, and density are required inputs in the PMED software for any cementitious or pozzolonic stabilized material. The agency specific calibration factors are determined based on the quality of the CAM material. The LTPP database for test sections with cementitious layers did not contain material properties for these test sections. Table 8.24 provides the layer properties for interim use until the distress prediction models have been calibrated with more test sections. The minimum elastic modulus for all CAM layers is 100,000 psi. The other layer and material properties inputs for the cement aggregate base mixtures are the same as for the stabilized subgrade layers under Section 8.8.

Table 8.24—28-Day Strength and Elastic Moduli Suggested for Use for Cement AggregateBase Layers

| Description of CAM Layer                                                                                                 | 28-Day Compressive<br>Strength, psi                                                                                       | 28-Day Elastic<br>Modulus, psi | Density,<br>pcf |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|
| High Strength CTB (intact cores recovered<br>with cement content greater than 6 percent)                                 | 1,500                                                                                                                     | 2,100,000                      | 150             |
| Moderate Strength CTB (intact cores<br>recovered with cement contents greater than<br>4 percent but less than 6 percent) | 600                                                                                                                       | 1,350,000                      | 150             |
| Low Strength CTB (intact cores cannot be recovered with cement content generally less than 4 percent)                    | Semi-Rigid Pavement Simulation not applicable;<br>assume conventional flexible pavement with high<br>stiffness GAB layer. |                                |                 |

# 8.8 STABILIZED SUBGRADE FOR STRUCTURAL LAYERS

The compressive strength (modulus of rupture), elastic modulus, and density are required inputs to the PMED software for any cementitious or pozzolonic stabilized material. The agency specific calibration factors are determined based on the quality of the CAM material. The LTPP database for test sections with cementitious layers did not contain material properties for these test sections. Table 8.25 provides the layer properties for interim use until the distress prediction models have been calibrated with more test sections. The minimum elastic modulus for all CAM layers is 100,000 psi. The other layer and material properties inputs for the cement aggregate base mixtures are the same as for the stabilized subgrade layers under Section 8.8.

| Stabilized Subgrade Layers                 |                                                                                                      |                                |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| Type of Stabilized Subgrade                | Recommended Representative Annual<br>Resilient Modulus, psi                                          | Recommended<br>Poisson's Ratio |  |  |  |
| Soil Cement and Cement<br>Stabilized Soils | 100,000                                                                                              | 0.2                            |  |  |  |
| Lime-Fly Ash Stabilized Soils              | 50,000                                                                                               | 0.30                           |  |  |  |
| Lime Stabilized Soils                      | 3 times the resilient modulus of the soil at<br>optimum water content and maximum dry<br>unit weight | 0.35                           |  |  |  |

Table 8.25—Resilient Modulus and Poisson's Ratio Values Suggested for Use for Stabilized Subgrade Layers

For a full-depth flexible pavement when the HMA mixture is placed directly over the stabilized subgrade soil, this is considered a semi-rigid pavement. As noted in previous chapters, semi-rigid pavements were not calibrated during the original global calibration studies, as well as for

GDOT local calibration study. Example screen shots showing the stabilized layer material property inputs are included at the end of this section below.

### 8.8.1 Screen Shots for the Stabilized Base/Subgrade Layer Properties

The following are screen shot examples that show the stabilized base or subgrade layer property inputs, as discussed within this section of Chapter 8. The material and layer properties are the same between the cement stabilized base layers and the cement or lime stabilized subgrade soil. The drop-down arrows are used to access or select specific information and other input values for the project.

#### **Overall Screen Shot for the Stabilized Base/Subgrade Layers**



## 8.9 BEDROCK

Table 8.26 provides guidance on determining the inputs for a bedrock layer when it exists within the project limits. For locations where the depth to bedrock exceeds 100 inches or has more than 100 inches of soil above it, assume the subgrade is infinite and do not enter the bedrock layer. An example screen shot showing the bedrock material property inputs are included at the end of this section below.

| Table 8.20—Layer Properties for Bedrock |                                |                                       |  |  |
|-----------------------------------------|--------------------------------|---------------------------------------|--|--|
|                                         | Bedrock Parameters             | Recommended Input Value               |  |  |
| Donth to Rodrock                        |                                | Estimate based on the soil borings or |  |  |
| Depth to Bedro                          | CK                             | topography.                           |  |  |
| Elastic<br>Modulus                      | Severely Weathered Bedrock     | 50,000 psi                            |  |  |
|                                         | Highly Fractured Bedrock       | 500,0000 psi                          |  |  |
|                                         | Massive and Continuous Bedrock | 1,000,000 psi                         |  |  |
| Poisson's<br>Ratio                      | Severely Weathered Bedrock     | 0.30                                  |  |  |
|                                         | Highly Fractured Bedrock       | 0.20                                  |  |  |
|                                         | Massive and Continuous Bedrock | 0.15                                  |  |  |
| Unit Weight                             |                                | 140 pcf                               |  |  |

 Table 8.26—Layer Properties for Bedrock

# 8.9.1 Screen Shots for the Bedrock Properties

The following are screen shot examples that show the bedrock layer property inputs, as

discussed within this section of Chapter 8. The drop-down arrows are used to access or select

specific information and other input values for the project.

### **Overall Screen Shot for Bedrock**



#### **Bedrock Layer Properties**

| Insert layer below:    | Layer 4 Su   | bgrade : A-2-6                                               | *                                                       |   |
|------------------------|--------------|--------------------------------------------------------------|---------------------------------------------------------|---|
| Layer type:            | Bedrock (6   | )                                                            |                                                         |   |
| Select material type   |              |                                                              |                                                         |   |
| Select from de         | efault list  | Import from database                                         | C Import from file Open                                 |   |
|                        |              |                                                              |                                                         |   |
| Highly fractured and w | eathered xml | A Bedrock                                                    |                                                         |   |
| Massive continuous xn  | nl           | Layer thickness(in.)<br>Poisson's ratio<br>Unit weight (pcf) | <ul> <li>✓ 10</li> <li>✓ 0.15</li> <li>✓ 140</li> </ul> |   |
|                        |              | ⊿ Strength                                                   |                                                         |   |
|                        |              | Elastic/resilient modulus (psi)                              | ✓ 500000                                                | = |
|                        |              | ▲ Identifiers                                                |                                                         |   |
|                        |              | Approver                                                     |                                                         |   |
|                        |              | Author                                                       | AASHTO                                                  |   |
|                        |              | County                                                       |                                                         | _ |
|                        |              | Date approved                                                | 1/1/2011                                                |   |
|                        |              | Date created                                                 | 1/1/2011                                                |   |
|                        |              | Description of object                                        | Default material                                        |   |
|                        |              | Direction of travel                                          |                                                         |   |
|                        |              | Display name/identifier                                      | Highly fractured and weathered                          |   |
|                        |              | District                                                     |                                                         |   |

# **CHAPTER 9—GEORGIA CALIBRATION FACTORS**

Through the calibration efforts of RP 11-17 both LTPP and non-LTPP test sections were used to estimate the precision and bias of the transfer functions in the MOP for predicting the performance indicators (distress and roughness) of GDOT's pavements in PMED. The resulting distress prediction models, or transfer functions, can be used to optimize new pavement and rehabilitation design strategies, and used in forecasting of maintenance, repair, rehabilitation, and reconstruction costs.

A summary of the input parameters and associated design level used to determine the calibration factors for v.2.3 of PMED is found in Table 9.1. Further details on the input library utilized for GDOT's local calibration are documented in the Task 2 interim report provided from RP 11-17 and are defined in the MOP.

| Input Group   |          | Performance Indicator                                                  |   | Calibration Input<br>Level |   |  |
|---------------|----------|------------------------------------------------------------------------|---|----------------------------|---|--|
|               |          |                                                                        |   | 2                          | 3 |  |
| Truck Traffic |          | Axle Load Distributions (single, tandem, tridem)                       | Х |                            |   |  |
|               |          | Truck Volume Distribution                                              | Х |                            |   |  |
|               |          | Lane and Directional Truck Distributions                               | Х |                            |   |  |
|               |          | Tire Pressure                                                          |   |                            | Х |  |
|               |          | Axle Configuration, Tire Spacing                                       |   |                            | Х |  |
|               |          | Truck Wander                                                           |   |                            | Х |  |
| Climate       |          | Temperature, Wind Speed, Cloud Cover, Precipitation, Relative Humidity | x |                            |   |  |
|               | Unbound  | Resilient Modulus- All Unbound Layers                                  | Х | Х                          |   |  |
|               |          | Classification and Volumetric Properties                               | Х |                            |   |  |
|               | and      | Moisture-Density Relationships                                         | Х |                            |   |  |
| Matarial      | Subgrade | Soil-Water Characteristic Relationships                                |   |                            | Х |  |
| Properties    |          | Saturated Hydraulic Conductivity                                       |   |                            | Х |  |
|               |          | HMA Dynamic Modulus                                                    |   |                            | Х |  |
|               |          | HMA Creep Compliance and Indirect Tensile Strength                     |   | Х                          | Х |  |
|               |          | Volumetric Properties                                                  | Х | Х                          |   |  |
|               |          | HMA Coefficient of Thermal Expansion                                   |   |                            | Х |  |

 Table 9.1— Input Levels used in Calibration of PMED Transfer Functions
|                   |     | PCC Elastic Modulus                                                         | Х | Х |   |
|-------------------|-----|-----------------------------------------------------------------------------|---|---|---|
|                   | PCC | PCC Flexural Strength                                                       | Х | Х |   |
|                   |     | PCC Indirect Tensile Strength (CRCP Only)                                   |   | Х |   |
|                   |     | PCC Coefficient of Thermal Expansion                                        | Х |   |   |
| All Materials     |     | Unit Weight                                                                 | Х | Х |   |
|                   |     | Poisson's Ratio                                                             |   |   | Х |
|                   |     | Other Thermal Properties; conductivity, heat capacity, surface absorptivity |   |   | х |
| Existing Pavement |     | Condition of Existing Layers                                                | Х | Х |   |

### 9.1 BASELINE FILES FOR THE CALIBRATION FACTORS

Some of the GDOT calibration factors for both flexible and rigid (JPCP) pavements are different than the global calibration factors. As such, 14 baseline files were created that include the GDOT calibration factors, so the designer does not have to manually enter these values for every design problem. The files listed in Table 9.2 contain the recommended calibration factors up to v.2.3 of PMED and the MOP Second Edition only. The most recent Edition of the MOP and subsequent software updates may contain different coefficients and require recalibration.

The designer will need to open the appropriate PMED file listed above. These files are located along with the other available files from the GDOT materials library. Once the file is opened in the software, use the "Save As" function to rename the file under the appropriate convention. Once saved, make the appropriate revisions or changes to the baseline file using project specific features and layer properties.

| Pavement<br>Type | Baseline File Name                           | Applicable Design Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                  | GA_Generic_NewFlexible_Neat Mixes            | Conventional, deep-strength or full-<br>depth design strategy. The baseline file<br>was setup as a conventional and deep-<br>strength pavement without subgrade<br>stabilization. If a full-depth pavement is<br>considered, the granular aggregate<br>base layer would need to be removed<br>or deleted; and if a stabilized subgrade<br>is needed, that layer would need to be<br>added. The calibration factors for all<br>transfer functions for these design<br>strategies are the same. This baseline<br>file is also applicable to the fractured<br>PCC slab with an HMA/AC overlay<br>strategy |  |
| New<br>Pavement  | GA_Generic_NewFlexible_PMA Mixes             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                  | GA_Generic_SemiRigid                         | Semi-rigid pavement design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                  | GA_Generic_Inverted Pavement                 | Inverted pavement design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                  | New_JPCP                                     | JPCP design strategy; the new (2014) global calibration factors were validated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  | New_CRCP                                     | CRCP design strategy; the global<br>calibration factors were not changed<br>because of insufficient sections and<br>data                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                  | GA_Generic_AC Overlay_Flexible_Neat<br>Mixes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                  | GA_Generic_AC Overlay_Flexible_PMA<br>Mixes  | HMA/AC overlay design strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  | GA_Generic_AC Over SemiRigid                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Rehabilitation/  | JPCP_over_AC                                 | JPCP design strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Overlay          | CRCP_over_AC                                 | CRCP design strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                  | Unbonded_JPCP_over_JPCP                      | Unbonded JPCP overlay strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  | Unbonded_CRCP_over_JPCP                      | Unbonded CRCP overlay strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  | JPCP_Restore                                 | Diamond grinding, slab replacement, and retrofit dowels (if needed) strategy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

#### Table 9.2— GDOT Baseline Files

### 9.2 TRANSFER FUNCTION CALIBRATION COEFFICIENTS

The remainder of this chapter simply lists the GDOT calibration factors for each transfer function for both flexible and rigid pavements. Tables 9.3 to 9.6 list the appropriate flexible pavement

calibration factors from the GDOT local calibration study, which are included in the above baseline files in the GDOT material library, and Tables 9.7 and 9.8 list the appropriate rigid pavement (JPCP) calibration factors. The values highlighted in these tables represent the GDOT calibration factors as determined through RP 11-17 that differ from the global calibration factors for Version 2.3 of the PMED software.

The calibration coefficients for the IRI regression equation for both the flexible and rigid pavements are not included within this chapter because the local calibration factors are the same as for the global calibration factors – they remained unchanged. In addition, the calibration coefficients for the reflection cracking regression equation for HMA/AC overlay of flexible and rigid pavements are the same as for the global calibration factors.

Along with the Third Edition MOP that was published in 2020, PMED Version 2.6 released in July 2020 will contain an updated top down cracking model and transfer function. New validation and potentially additional data will be necessary in order to implement or use the top down cracking as a design criterion in future software iterations.

Example screen shots showing the calibration factor inputs are included at the end of this section.

| Transfer Function | Clobal Valua | GDOT          | Value        |
|-------------------|--------------|---------------|--------------|
| Coefficient       | Global value | Neat Mixtures | PMA Mixtures |
| K1                | -3.35412     | -2.45         | -2.55        |
| K2                | 1.5606       | 1.5606        | 1.5606       |
| K3                | 0.4791       | 0.30          | 0.30         |

Table 9.3— HMA/AC Rutting: GDOT Calibration Factors

Global Standard Deviation Equation:  $\sigma_{RutDepth,HMA} = 0.24 * Pow(Rut, 0.8026) + 0.001$ 

GDOT Standard Deviation Equation:  $\sigma_{RutDepth,HMA}^{Georgia} = 0.20 * Pow(Rut, 0.550) + 0.001$ 

| Table 9.4— Onbound Layer Rutting. GDOT Cambration Factors |              |            |  |  |  |  |  |
|-----------------------------------------------------------|--------------|------------|--|--|--|--|--|
| Transfer Function<br>Coefficient                          | Global Value | GDOT Value |  |  |  |  |  |
| Coarse-Grained, Bs1                                       | 1.0          | 0.50       |  |  |  |  |  |
| Fine-Grained Bs1                                          | 10           | 0.30       |  |  |  |  |  |

#### Table 9.4— Unbound Layer Rutting: GDOT Calibration Factors

NOTE: The standard deviation equation for the unbound layer rutting was not changed from the local calibration process.

#### Table 9.5— HMA/AC Bottom-Up Fatigue Cracking: GDOT Calibration Factors

| Transfer Function<br>Coefficient | Global Value | GDOT Value (Typical HMA<br>Mixtures) |
|----------------------------------|--------------|--------------------------------------|
| K1                               | 0.007566     | 0.00151                              |
| K2                               | 3.9492       | 3.9492                               |
| K3                               | 1.281        | 1.281                                |
| C1                               | 1.0          | 2.2                                  |
| C2                               | 1.0          | 2.2                                  |
| C3                               | 6.000        | 6.000                                |

Global Standard Deviation Equation:

$$\sigma_{Bottom-Up} = 1.13 + \frac{13}{1 + e^{7.57 - 15.5Log(DI + 0.0001)}}$$

GDOT Standard Deviation Equation:

$$\sigma_{Bottom-Up}^{Georgia} = 1.0 + \frac{10}{1 + e^{7.5 - 6.5 Log(DI + 0.0001)}}$$

#### Table 9.6—HMA/AC Thermal Transverse Cracking: GDOT Calibration Factors

| Transfer Function<br>Coefficient | Global Value | GDOT Value (Typical HMA<br>Mixtures) |
|----------------------------------|--------------|--------------------------------------|
| Bt1                              | 1.5          | 35                                   |
| Bt3                              | 1.5          | 35                                   |

NOTE: The standard deviation equation was not revised from the local calibration process. However, 50 percent reliability is recommended for use in design so the standard deviation equation will have no impact (see Table 4.7 in Section 4 of this Guide).

# Table 9.7—JPCP Mid-Slab Cracking: GDOT Calibration Factors (Use for all JPCP Applications: Overlays and Restoration)

| Transfer<br>Function<br>Coefficient | Global Value                         | GDOT Value                    |
|-------------------------------------|--------------------------------------|-------------------------------|
| C1                                  | 2.0                                  | 2.0                           |
| C2                                  | 1.22                                 | 1.22                          |
| C4                                  | 0.52                                 | 0.52                          |
| C5                                  | -2.17                                | -2.17                         |
| Standard<br>Deviation               | 3.5522 * Pow(CRACK,0.3415) +<br>0.75 | 3.5522*Pow(CRACK,0.3415)+0.75 |

| Transfer<br>Function<br>Coefficient | Global Value                     | GDOT Value                           |
|-------------------------------------|----------------------------------|--------------------------------------|
| C1                                  | 0.595                            | 0.595                                |
| C2                                  | 1.636                            | 1.636                                |
| C3                                  | 0.00217                          | 0.00217                              |
| C4                                  | 0.00444                          | 0.00444                              |
| C5                                  | 250                              | 250                                  |
| C6                                  | 0.47                             | 0.47                                 |
| C7                                  | 7.3                              | 7.3                                  |
| C8                                  | 400                              | 400                                  |
| Standard<br>Deviation               | 0.07162*Pow(FAULT,0.368)+0.00806 | 0.07162*Pow(FAULT,0.368)+<br>0.00806 |

#### Table 9.8—JPCP Faulting: GDOT Calibration Factors (Use for all JPCP Applications: Overlays and Restoration)

Table 9.9—CRCP Punchout: GDOT Calibration Factors (All CRCP Applications)

| Transfer<br>Function<br>Coefficient | Global Value         | GDOT Value           |
|-------------------------------------|----------------------|----------------------|
| C1                                  | 2                    | 2                    |
| C2                                  | 1.22                 | 1.22                 |
| C3                                  | 107.73               | 107.73               |
| C4                                  | 2.475                | 2.475                |
| C5                                  | -0.785               | -0.785               |
| Standard<br>Deviation               | 2.208*Pow(PO,0.5316) | 2.208*Pow(PO,0.5316) |

### 9.3 SCREEN SHOTS FOR THE CALIBRATION COEFFICIENTS

The following are screen shot examples that show the calibration coefficient inputs, as presented within this section of Chapter 9. The purpose of the screenshots are to show the general location of the items and the details within the screenshot should not be used directly. It should be noted that the actual values for the calibration factors in the screenshots are not always equal to the values that should be used.

**Overall Screen Shot for Calibration Coefficients – Flexible Pavements** 

| Explorer                                                        | 4 × /13_4096_1:Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                            | • X                                                |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------|----------------------------------------------------|
|                                                                 | General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Performance Criteria                       | Limit Reliability                                  |
|                                                                 | Design type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | New Pavement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                  |                                            |                                                    |
| Climate                                                         | Pavement type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flexible Pavement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                  | New Flexible Pavement-Calibration Settings | •                                                  |
| AC Layer Properties                                             | Design life (years);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>(</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 -               |                                            |                                                    |
| Pavement Structure                                              | December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1005               |                                            |                                                    |
| <ul> <li>Layer 1 Flexible : Default asphalt concrete</li> </ul> | base construction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1985 -             | AC Cracking                                | 7                                                  |
| Layer 2 Flexible : Default asphalt concrete                     | Pavement construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion May 👻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1985 👻             | AC Cracking C2 Top                         | 35                                                 |
| - Layer 3 Chemically Stabilized : Lime stabilize                | Traffic opening:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | June 👻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1985 👻             | AC Cracking C3 Top                         | ▼ 0                                                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AC Cracking C4 Top                         | ▼ 1000                                             |
| - Tayler 5 Bedrock - Highly fractured and wear                  | Special traffic in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ading for flexible pavements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | AC Cracking Top Standard Deviation         | 200 + 2300/(1+exp(1.072-2.1654*LOG10(TOP+0.0001))) |
| New Pavible                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | AC Cracking C1 Bottom                      | ✓ 1                                                |
| Rehabilitation Flexible                                         | 📲 Add Layer 🔉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remove Layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | AC Cracking C2 Bottom                      | ✓ 1                                                |
| New Bind                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AC Cracking C3 Bottom                      | ✓ 6000                                             |
| - Bestore Biold                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AC Cracking Bottom Standard Deviation      | 1.13+13/(1+exp(7.57-15.5*LOG10(BOTTOM+0.0001)))    |
| Bonded Bioid                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ▲ AC Fatigue                               |                                                    |
| Unbonded Binid                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AC Fatigue K1                              | ✓ 0.007566                                         |
| I Sensitivity                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A COLUMN THE ACTION OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contraction of the | AC Fatigue K2                              | 3.9492                                             |
|                                                                 | Click here to edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Laver 2 Elexible : Default as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nhalt concrete     | AC Fatigue k3                              | 1.281                                              |
| PDF Output Report                                               | Clickhowski                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AC Fatigue BF1                             |                                                    |
| Excel Output Report                                             | Click here to edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Layer 5 Chemically Stabilize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | u . Lime stabil    | AC Fatigue BF2                             |                                                    |
| Multiple Project Summary                                        | 201 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AC Fatigue BF3                             | ✓ 1                                                |
| 🛅 Batch Run                                                     | The second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AC Rutting                                 |                                                    |
| 🗄 🚞 Tools                                                       | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | AC Rutting Standard Deviation              | 0.24 Pow(RU1,0.8026)+0.001                         |
| 🖮 🚞 ME Design Calibration Factors                               | Click here to edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Layer 4 Subgrade : A-2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 200              | AC Rutting K1                              | ✓ -3.35412                                         |
|                                                                 | time of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second     | AC Rutting K2                              | 1.5606                                             |
|                                                                 | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Children Mal       | AC Rutting K3                              | ✓ 0.4/91                                           |
|                                                                 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W W                | AC Rutting BR I                            |                                                    |
|                                                                 | Clinkhowski                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Participation of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | and and            | AC Rutting BR2                             |                                                    |
|                                                                 | Click here to edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Layer 3 Deurock . Highly frac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stured and Wea     | AC Rulling DRS                             |                                                    |
|                                                                 | A STATISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frit of the s      | CSM Cracking C1                            | I 1                                                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carles - X         | CSM Cracking C1                            |                                                    |
|                                                                 | Sta Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 20 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and states and its | COM C LL CD                                |                                                    |

**Overall Screen Shot for Calibration Coefficients – Rigid Pavements** 

| Explorer 4 ×                           | 13_4096_1:Pr                                                                                                    | oject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                     |                                             |               | • X     |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|---------------|---------|
| - Projects                             | General Information                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Performance Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | Limit                                       | Reliability ^ |         |
|                                        | Design type:                                                                                                    | New Pavement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                      |                                             |               |         |
|                                        | Pavement tune:                                                                                                  | Jointed Plain Concrete Payamen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * (IPL -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | New Rigid Pavement-Calibration Setting | gs                                          |               | -       |
|                                        | r avenient type.                                                                                                | John Concrete 1 dverhei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r (91 · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                             |               |         |
| Pavement Structure                     | Design life (years)                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | € Z↓ E                                 |                                             |               |         |
| V Laver 1 PCC : JPCP Default           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC Cracking                           |                                             |               | -       |
|                                        | Pavement construct                                                                                              | tion May 👻 🕇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PCC Cracking C1                        | <ul><li>✓ 2</li></ul>                       |               |         |
| V Laver 3 Subgrade : A-2-6             | T dvement construct                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCC Cracking C2                        | ✓ 1.22                                      |               |         |
|                                        | affic opening:                                                                                                  | June 💌 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PCC Cracking C4                        | ✓ 1                                         |               |         |
| - Project Specific Calibration Factors | Special traffic l                                                                                               | pading for flexible pavements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC Cracking C5                        | ✓ -1.98                                     |               |         |
| New Flexible                           | a second a second a second a second a second a second a second a second a second a second a second a second a s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC Reliability Cracking Standar       | rd Deviatic Pow(5.3116*CRACK,0.3903) + 2.99 |               |         |
|                                        | h Add I must                                                                                                    | Paragua Lawar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC Faulting                           |                                             |               |         |
|                                        | Aug Layer                                                                                                       | Nemove Layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC Faulting C1                        | 1.0184                                      |               | =       |
| - Restore Rigid                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC Faulting C2                        | ✓ 0.91656                                   |               |         |
|                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC Faulting C3                        | ✓ 0.0021848                                 |               |         |
| Unbonded Rigid                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC Faulting C4                        | 0.000883739                                 |               |         |
| Sensitivity                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PCC Faulting C5                        | ₹ 250                                       |               |         |
|                                        | Click here to edit                                                                                              | Layer 1 PCC : JPCP Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCC Faulting C6                        | ✓ 0.4                                       |               |         |
| PDF Output Report                      | to lot 1                                                                                                        | A BARRIER STRATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PCC Faulting C/                        | ✓ 1.83312                                   |               |         |
| Excel Output Report                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 A. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PCC Faulting C8                        | 400                                         |               |         |
|                                        | - 10 ·                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PCC Reliability Faulting Standard      | Deviation Pow(0.009/"FAUL1.0.51/8)+0.014    |               |         |
| - Batch Run                            | Click here to edi                                                                                               | Layer 2 Chemically Stabilized : L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ime stabil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A PCC IRI-CRCP                         |                                             |               |         |
| 🕀 🧰 Tools                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCCIRICI                               | 3.15                                        |               |         |
| ME Design Calibration Factors          | and a surry                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S. M. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PCC IRI C2                             | 28.35                                       |               |         |
|                                        | A LAND THE A                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC IRI CRCP Std.Dev.                  | ✓ 5.4                                       |               |         |
|                                        | Click here to edit                                                                                              | Laver 3 Subgrade : A-2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A PCC IRI-JPCP                         |                                             |               |         |
|                                        | a state of the                                                                                                  | a series and the loss of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC IRI J1                             | 0.8203                                      |               |         |
|                                        | State of the second                                                                                             | the second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PCC IRI J2                             | ✓ 0.4417                                    |               |         |
|                                        | and the set                                                                                                     | a state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCC IRI J3                             | ✓ 1.4929                                    |               |         |
|                                        | Click here to edit                                                                                              | Laver 4 Bedrock - Highly fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d and wea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PCC IRI J4                             | ✓ 25.24                                     |               |         |
|                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PCC IRI JPCP Std.Dev.                  | 5.4                                         |               |         |
|                                        | A CONTRACTO                                                                                                     | The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - drie 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 PCC Punchout                         |                                             |               |         |
|                                        |                                                                                                                 | at which the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PCC CRCP C1                            | ✓ 2                                         |               | -       |
|                                        | TANK CONTRACTOR OF                                                                                              | A DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNE | The lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of the lot of | 000.0000.09                            | 1.4.1.3.301                                 |               | Par set |

NOTE: The PCC cracking C4 and C5 values are different from the GDOT values.

#### Flexible Pavement Calibration Coefficients

| Ne | w Flexible Pavement-Calibration Settings |                                              | • |
|----|------------------------------------------|----------------------------------------------|---|
| •• | ]2↓   □□                                 |                                              |   |
|    | AC Cracking                              |                                              | * |
|    | AC Cracking C1 Top                       | ✓ 7                                          |   |
|    | AC Cracking C2 Top                       | ✓ 3.5                                        |   |
|    | AC Cracking C3 Top                       | ✓ 0                                          |   |
|    | AC Cracking C4 Top                       | ✓ 1000                                       |   |
|    | AC Cracking Top Standard Deviation       | 200 + 2300/(1+exp(1.072-2.1654*LOG10(TOP+0.0 | = |
|    | AC Cracking C1 Bottom                    | ✓ 1                                          | 7 |
|    | AC Cracking C2 Bottom                    | ✓ 1                                          |   |
|    | AC Cracking C3 Bottom                    | ✓ 6000                                       |   |
|    | AC Cracking Bottom Standard Deviation    | 1.13+13/(1+exp(7.57-15.5*LOG10(BOTTOM+0.000  |   |
| 4  | AC Fatigue                               |                                              | - |
|    | AC Fatigue K1                            | ✓ 0.007566                                   |   |
|    | AC Fatigue K2                            | 3.9492                                       |   |
|    | AC Fatigue k3                            | ✓ 1.281                                      |   |
|    | AC Fatigue BF1                           | ✓ 1                                          |   |
|    | AC Fatigue BF2                           | ✓ 1                                          |   |
|    | AC Fatigue BF3                           | ✓ 1                                          |   |
| 4  | AC Rutting                               |                                              |   |
|    | AC Rutting Standard Deviation            | 0.24*Pow(RUT,0.8026)+0.001                   |   |
|    | AC Rutting K1                            | ✓ -3.35412                                   |   |
|    | AC Rutting K2                            | ✓ 1.5606                                     |   |
|    | AC Rutting K3                            | ✓ 0.4791                                     |   |
|    | AC Rutting BR1                           | ✓ 1                                          |   |
|    | AC Rutting BR2                           | ✓ 1                                          |   |
|    | AC Rutting BR3                           | ✓ 1                                          |   |
| 4  | CSM Cracking                             |                                              |   |
|    | CSM Cracking C1                          | ✓ 1                                          |   |
|    | CSM Cracking C2                          | ✓ 1                                          |   |
|    | COM Condition CO                         |                                              | X |

Rigid Pavement Calibration Coefficients

| Net | N Rigid Pavement-Calibration Settings       |                                |   |
|-----|---------------------------------------------|--------------------------------|---|
| •   | ]⊉↓│                                        |                                |   |
|     | PCC Faulting C2                             | 0.91656                        |   |
|     | PCC Faulting C3                             | ✓ 0.0021848                    |   |
|     | PCC Faulting C4                             | 0.000883739                    |   |
|     | PCC Faulting C5                             | ✓ 250                          |   |
|     | PCC Faulting C6                             | ✓ 0.4                          |   |
|     | PCC Faulting C7                             | 1.83312                        |   |
|     | PCC Faulting C8                             | ✓ 400                          |   |
|     | PCC Reliability Faulting Standard Deviation | Pow(0.0097*FAULT,0.5178)+0.014 |   |
| a   | PCC IRI-CRCP                                |                                |   |
|     | PCC IRI C1                                  | 3.15                           |   |
|     | PCC IRI C2                                  | ✓ 28.35                        |   |
|     | PCC IRI CRCP Std.Dev.                       | ✓ 5.4                          | - |
| a   | PCC IRI-JPCP                                |                                | - |
|     | PCC IRI J1                                  | 0.8203                         |   |
|     | PCC IRI J2                                  | ✓ 0.4417                       |   |
|     | PCC IRI J3                                  | ✓ 1.4929                       |   |
|     | PCC IRI J4                                  | ✓ 25.24                        |   |
|     | PCC IRI JPCP Std.Dev.                       | ✓ 5.4                          |   |
| a   | PCC Punchout                                |                                |   |
|     | PCC CRCP C1                                 | ✓ 2                            |   |
|     | PCC CRCP C2                                 | ✓ 1.22                         |   |
|     | PCC CRCP C3                                 | 216.8421                       |   |
|     | PCC CRCP C4                                 | 33.15789                       |   |
|     | PCC CRCP C5                                 | ✓ -0.58947                     |   |
|     | PCC CRCP Crack                              | ✓ 1                            |   |
|     | PCC Reliability PO Standard Deviation       | 2+2.2593*Pow(PO.0.4882)        |   |
| a   | Identifiers                                 |                                |   |

### **CHAPTER 10—CONCLUSIONS AND IMPLEMENTATION PLAN**

The foundation for implementation of the MEPDG and associated software for GDOT pavement design practices is well established as evident by the contents of this document. However, the transition to these practices still requires the completion of on-going and future research efforts regarding the PMED software and its inputs. This chapter serves to identify the remaining needs and tasks necessary for implementation and continual use of PMED and all future iterations of the software. Additional information on this topic may be found in the official GDOT Implementation Plan (Von Quintus et al., 2016).

#### **10.1 IMPLEMENTATION ACTIVITIES**

GDOT has been preparing for the implementation of the MEPDG methodology for several years through its sponsorship of MEPDG-related activities. The following list highlights the major activities that may be considered implemented or recognized by the most recent calibration efforts and included in current PMED practices.

- GDOT Project 10-09: GDOT Load Spectra Program. February 2011 February 2013 (Selezneva et al., 2014)
- Report GDOT-TO-01-Task 1, Literature Search and Synthesis Verification and Local Calibration/Validation of the MEPDG Performance Models for use in Georgia, July 2013 (Von Quintus et al., 2013a)
- Report GDOT-TO-01 Task 2, Validation of the MEPDG Transfer Functions using the LTPP Test Sections in Georgia, July 2013 (Von Quintus et al., 2013b)

- GDOT Project 10-10: Georgia Concrete Pavement Performance and Longevity. May 2010
   February 2012 (Tsai et al, 2014)
- 5. GDOT Project 10-04: Determination of Coefficient of Thermal Expansion for Portland Cement Concrete for MEPDG Implementation, October 2012 (Kim, 2012)
- GDOT Project 05-19: Improving GDOT's Highway Pavement Preservation (Tsai et al., 2009)
- GDOT Research Project 12-07: Measurements of Dynamic Modulus and Resilient Modulus of Roadway Test Sites, December 2013 (Kim, 2013)
- Report GDOT-TO-02-Task 3, Calibration of the MEPDG Transfer Functions in Georgia, July 2014 (Von Quintus et al., 2014)
- Report FHWA/GA-DOT-RD-014-1117: Georgia DOT Pavement ME Design User Input Guide, November 2014; and Georgia DOT Pavement ME Design Software Manual, 2015 (Von Quintus et al., 2015)

Since the adoption of these efforts toward implementing the MEPDG methodology and development of the GDOT input libraries, more activities have been conducted that have not yet been integrated into the most recent calibration and PMED practices. These include both completed and ongoing GDOT research projects as well as other reports and activities. Three notable highlights from these efforts include (1) improvement of predicted pavement performance using MERRA climate data, (2) expansion of the existing HMA materials library, and (3) establishment of an extensive concrete material properties library.

 GDOT Research Project 16-10: Improvement of Climate Data for use in MEPDG Calibration and other Pavement Analysis (Durham et al., 2019)

- GDOT Research Project 16-19: Effects of Asphalt Mixture Characteristics on Dynamic Modulus and Fatigue Performance (Kim et al, 2019)
- GDOT Research Project 18-03: Development of Concrete Material Property Database for Pavement ME Input. October 2018 – Ongoing.
- GDOT Research Project 18-04: Development of Equivalent Single Axle Load (ESAL)
   Factor for Georgia Pavement Design. October 2018 Ongoing.
- GDOT Research Project 19-16: Improvement of Climate Data for use in MEPDG Calibration and other Pavement Analysis- Phase II. August 2019 – Ongoing.
- 6. Continued performance monitoring and use in future updates to the local calibration coefficients of the transfer function.
- 7. Improved design manuals, workshop, and training materials on using the PMED software.

The completion of these activities has provided GDOT with valuable information and data necessary for conducting concurrent pavement designs using PMED. Before these designs may be considered as a GDOT approved design strategy, further actions must be taken to verify and validate their effect on the PMED performance predictions.

#### **10.2 REMAINING IMPLEMENTATION ITEMS**

While the existing resources have provided GDOT with the necessary tools to perform preliminary designs, several actions must be taken to ensure the continual operation of the PMED software. The following sections discuss the most pertinent actions required to reach full implementation.

#### **10.2.1 Truck Traffic Input Library**

Expansion of the WIM database and continual developments under RP 18-04 will result in increased truck weight data for improving on the truck traffic default values. As a result, the traffic input libraries will need to be expanded and updated to include of the new WIM data.

The analysis of the added WIM data should be used to determine if the existing traffic inputs need to be revised and/or expanded to cover the range of GDOT roadway classifications. It is strongly recommended that the WIM data be used to confirm whether the default input values (especially the normalized axle load spectra or distribution) need to be revised or additional default values be added to the truck traffic library.

#### 10.2.2 Climate Data

Updates to the PMED climate input process in v.2.5 of the software have not been evaluated for their effect on pavement performance using the GDOT calibration sections because the NARR and MERRA-2 hourly climate data were not available at the time the calibration was performed. Further, the improved MERRA data outlined in RP 16-10 as well as the custom climate files developed as part of the new climate study will have both direct and indirect effect on pavement design inputs. Upon completion of RP 16-19, the new climate data inputs should be verified and validated to see if the data show significant changes in the software analysis. Due to the impact of climate on the pavement performance models, it is likely that a recalibration of the transfer function coefficients will be necessary.

#### 10.2.3. Materials/Layer Input Library

1. AC/HMA materials:

The further expansion of the GDOT HMA library under RP 16-19 has provided the dynamic modulus, dynamic shear modulus, and phase angle inputs for several standardized HMA mixtures. Presently, the transfer function coefficients for rutting and fatigue cracking represent general conditions that are not specific to these measured mixture characteristics. A reevaluation of these distress models is required before considering the additional inputs in current designs.

Recent changes have been made to the indirect tensile and creep compliance inputs for HMA materials in PMED v.2.5 and the current edition of the MOP. These properties were not available for the latest calibration of GDOT transfer functions and remain undocumented in the GDOT materials library. Therefore, material testing is still required to determine laboratory derived fatigue cracking coefficients from flexural bending beam fatigue tests or the indirect tensile strength test. The flexural bending beam fatigue test in accordance with AASHTO T 321, and the indirect tensile test in accordance with ASTM D6931. The laboratory derived fatigue cracking coefficients from flexural bending test in the field-derived, mixture specific fracture coefficients that impact flexible pavement performance models in PMED.

#### 2. PCC materials

No testing data was available in the GDOT material library for local calibration of the PCC materials with the exception of the coefficient of thermal expansion (CTE). As a result, level 2 and 3 inputs were relied upon for all current rigid pavement transfer functions. Ongoing research efforts have provided extensive laboratory measurements on several standardize concrete mixtures to be added to this library. New measurements include fresh mixture, volume characteristic, thermal, and strength properties. Upon the

142

completion of this library, the new material properties will need to be verified, validated, and included in the latest recalibration before implemented in the PMED input process.

3. Unbound/Base materials:

Resilient modulus testing of both unbound granular aggregate base (GAB) materials and subgrade soils is already included in the GDOT material library. Although the resilient modulus testing of GAB materials is fairly complete, the resilient modulus of subgrade soils should be expanded to include all major soil types or classes throughout the state. Additionally, extensive laboratory testing on cement stabilized base materials is still omitted from the input library.

#### 10.2.4. Recalibration and Verification

Global calibration of the PMED transfer functions was completed under NCHRP Projects 1-37A and 1-40, and as a part of the annual software updates in 2018, primarily using data extracted from the Long Term Pavement Performance (LTPP) database over a wide range of pavement sections from across the United States, including some in Canada. Under RP 11-17, the transfer functions were initially verified and calibrated using performance data from Georgia LTPP and non-LTPP roadway segments with current design and materials and construction standards, as part of the early MEPDG implementation process in Georgia.

However, the verification-calibration effort is not a one-time activity and should be conducted periodically to verify if the accuracy and bias of existing transfer functions with consideration to new materials, techniques, and design strategies have changed. Additionally, future versions of the software will continue to introduce new or improved prediction models that must be validated. For example, a new top-down cracking transfer function is expected to release in v.2.6 of PMED.

This distress model will require validation and potentially new data before being considered as a design criterion. As a result of these changes and recent additions to the GDOT input library, recalibration is required to establish more accurate relationships between the computed structural responses, accumulated damage, and observed pavement distresses.

In October 2019, the web-based Calibration Assistance Tool (CAT, v1.0) was made available to help agencies conduct comparisons between versions and perform local calibrations of the PMED performance models. The tool was developed in accordance with the 11-step procedure given in the AASHTO Local Calibration Guide and is a full-factor web application, consisting of a calibration database with a subset of LTPP sections used in the global calibration and user-defined test sections. While more convenient than previous calibration methods, this tool requires significant user engagement and engineering decisions. In order to utilize the CAT for current and future iterations of the PMED design practices, GDOT must continue monitoring existing test sections and establish additional sections with newer mixtures, design strategies, and materials. These activities will provide long term performance data and ensure the transfer functions are producing reliable results.

#### **10.3 CONCLUSIONS**

The contents of this report provide GDOT with the means to develop pavement designs and evaluate certain performance criteria in accordance with the MEPDG MOP Second and Third Editions. Recent additions to the PMED input library also included in this report are available, but not yet used to calibrate the performance prediction models, and can be used in current and future software versions. In order to ensure the long-term success of implementing the MEPDG, the remaining services outlined in this chapter will greatly help current and future pavement design engineers:

144

- 1. Select the most appropriate design strategies for specific conditions,
- 2. Easily identify the most representative materials, traffic, and climate data that are specific to Georgia conditions,
- Streamline the design process to focus on making engineering decisions instead of manually entering input data, and
- 4. Use designs and models that are calibrated to Georgia specific field conditions

These services must be procured through either outsourced contracts or Research Needs Statements (RNS). Once completed, GDOT can fully endorse and complete the transition from the existing pavement design methodologies to the ME-based approach.

## CHAPTER 11—INPUT WORKSHEET

This chapter of the Input User Guide provides a series of worksheets or checklists for the designer to use, at least in the beginning, for setting up a design problem and selecting the inputs. One worksheet is provided for flexible pavements and one for rigid pavements. Each worksheet includes the recommended default values for those input parameters that should remain unchanged, and references the sections and/or appropriate tables in this User Input Guide.

Multiple example problems are included in a separate document, defined as Volume 2, to the Input User Guide. All appropriate worksheets have been completed for each example design problem and are included in Volume 2.

## CHECK LIST OF INPUTS FOR NEW AND REHABILITATED FLEXIBLE PAVEMENT DESIGNS

|                                                                                                                                                | Input Parameter                                              | GDOT Input<br>Value        | Comment                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------|---------------------------|--|
|                                                                                                                                                | Design Type                                                  | New Pavement or<br>Overlay | Section 3.1.1             |  |
| General                                                                                                                                        | Pavement Type                                                | or AC over AC              |                           |  |
| Information                                                                                                                                    | Design Life, years                                           | (20)*                      | Section 3.3               |  |
|                                                                                                                                                | Base/Subgrade Construction Date                              |                            |                           |  |
|                                                                                                                                                | Pavement Construction Date                                   |                            | Section 3.4; Table 3.2    |  |
|                                                                                                                                                | Traffic Opening Date                                         |                            |                           |  |
|                                                                                                                                                | Initial IRI, in./mi.                                         |                            | Section 4.1, Table 4.1    |  |
|                                                                                                                                                | Terminal IRI, in./mi.                                        |                            | Section 4.2.1, Table 4.6  |  |
|                                                                                                                                                | Top Down Fatigue Cracking, ft./mi.                           | (5,000)**                  | Not considered in design. |  |
|                                                                                                                                                | Bottom-Up Fatigue Cracking, %                                |                            |                           |  |
| Performance                                                                                                                                    | Thermal (Transverse) Cracking,                               |                            |                           |  |
| Criteria                                                                                                                                       | ft./mi.                                                      |                            | Section 4.2 Tables 4.2    |  |
|                                                                                                                                                | Permanent Deformation (Rut<br>Depth)- Total Pavement, inches |                            | and 4.5                   |  |
|                                                                                                                                                | Permanent Deformation (Rut                                   |                            |                           |  |
|                                                                                                                                                | Depth)- AC Only, inches                                      |                            |                           |  |
|                                                                                                                                                | AC Total Cracking (Overlays), %                              |                            | Section 4.2, Table 4.5    |  |
|                                                                                                                                                | Reliability Level, percent                                   |                            | Section 4.3, Table 4.7    |  |
|                                                                                                                                                | Two-Way Average Annual Daily<br>Truck Traffic                |                            |                           |  |
|                                                                                                                                                | Number of Lanes in Design<br>Direction                       |                            | Section 5.1               |  |
| Traffic, Site<br>Features                                                                                                                      | Percent Trucks in Design Direction (DDF)                     | (50)*                      |                           |  |
|                                                                                                                                                | Percent of Trucks in Design Lane<br>(LDF)                    |                            | Section 5.1; Table 5.1    |  |
|                                                                                                                                                | Operational Speed                                            |                            | Section 5.1               |  |
|                                                                                                                                                | Traffic Capacity Cap                                         | (Not Enforced)*            | Section 5.2               |  |
|                                                                                                                                                | Avg. Axle Width                                              | (8.5)*                     |                           |  |
|                                                                                                                                                | Dual Tire Spacing                                            | (12)*                      |                           |  |
|                                                                                                                                                | Tire Pressure                                                | (120)*                     | Section 5.3; use global   |  |
| Configuration                                                                                                                                  | Tandem Axle Spacing                                          | (51.6)*                    | default values            |  |
| Configuration                                                                                                                                  | Tridem Axle Spacing                                          | (49.2)*                    |                           |  |
|                                                                                                                                                | Quad Axle Spacing                                            | (49.2)*                    |                           |  |
| * - Default values should be used.<br>** - Excessively high value used so that top-down cracking does not control design when the optimization |                                                              |                            |                           |  |

tool is being used.

|                            | Mean Wheel Location                      |                                                        | (18)*               | Section 5.4; not used for flexible design.                                                   |
|----------------------------|------------------------------------------|--------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------|
| Traffic; Lateral<br>Wander | Traffic Wander, Standard Deviation       |                                                        | (10)*               | Section 5.4; use global default values                                                       |
|                            | Design Lane Width                        |                                                        | (12)**              | Section 5.4; not used for flexible design.                                                   |
| Traffic,                   | Average Axle Space<br>(short/medium/long | ng<br>)                                                | 12/15/18*           | Section 5.5; not used                                                                        |
| Wheelbase                  | spacing (short/med                       | n each axle<br>ium/long)                               | 17/22/61*           | for flexible design,                                                                         |
|                            | Normalized Vehicle                       | Class Distribution                                     |                     | Section 5.6, Table 5.2                                                                       |
|                            | Growth Rate & Fun                        | ction                                                  |                     | Section 5.6                                                                                  |
| Traffic;<br>Volume         | Monthly Adjustment                       | t Factors                                              | (GDOT<br>Defaults)* | Section 5.7: Tables 5.3 or 5.4                                                               |
|                            | Number of Axles pe                       | r Truck Type                                           | (GDOT<br>Defaults)* | Section 5.9, Table 5.6                                                                       |
|                            | Hourly Distribution I                    | Factors                                                | (Defaults)          | Section 5.8; not used.                                                                       |
| Traffic: Ayle              | Single Axles                             |                                                        |                     |                                                                                              |
| Loads                      | Tridem Axles                             |                                                        |                     | Section 5.10; Table 5.7                                                                      |
|                            | Quad Axles                               |                                                        |                     |                                                                                              |
|                            | Location:                                | Longitude                                              |                     |                                                                                              |
|                            |                                          | Latitude                                               |                     | Section 6.1                                                                                  |
| Climate                    |                                          | Elevation, ft.                                         |                     | -                                                                                            |
|                            | Depth to Water Table, ft.                |                                                        |                     | Section 6.2; Table 6.1                                                                       |
|                            | Climate Station                          |                                                        |                     | Section 6.3, 6.5 Table 6.2-6.3                                                               |
|                            | Multi Layer Rutting Parameters           |                                                        | False               | Section 7.1.1; not used                                                                      |
|                            | Shortwave Absorptivity                   |                                                        | (0.85)*             | Section 7.1.2; use global default value                                                      |
|                            | Endurance Limit Ap                       | plied                                                  | False               | Section 7.1.3; not used                                                                      |
| AC (HMA)                   | Layer Interface (Interface Friction)     |                                                        | (1)*                | Section 7.1.4; use<br>global default value for<br>all layers                                 |
| Properties:                |                                          | Milled Thickness                                       |                     | Section 7.1.6                                                                                |
| New and<br>Existing        |                                          | Fatigue Cracking;<br>input level 2                     |                     | Section 7.1.5, Figure 7.1                                                                    |
| Layers                     | Rehabilitation<br>(Condition of          | Pavement Rating;<br>input level 3                      |                     | Section 7.1.5, Table 7.2                                                                     |
|                            | existing flexible<br>pavement)           | Rut Depth in<br>existing layers;<br>input levels 1 & 2 |                     | Section 7.1.5, use<br>global default values;<br>Table 7.1                                    |
|                            |                                          | Total Rut Depth,<br>input level 3                      |                     | Section 7.1.5, use global default values                                                     |
|                            | Elastic Modulus, ps<br>Poisson's Ratio   | i                                                      |                     | Section 8.9, Table 8.26,                                                                     |
| Bedrock                    | Unit Weight, pcf                         |                                                        | (140)*              | Section 8.9, Table 8.26;<br>used only when<br>subgrade thickness is<br>less than 100 inches. |

|                 | Thickness, inches (if applicable)     |                  | Section 8.6               |
|-----------------|---------------------------------------|------------------|---------------------------|
|                 | Poisson's Ratio                       |                  | Section 8.6.3. Table 8.23 |
|                 | Resilient Modulus                     |                  | Section 8.6.2 Table 8.20  |
|                 | Coefficient of Lateral Pressure       | (0.50)*          | Not used                  |
|                 |                                       | (0.00)           | Always check this box for |
|                 | Is Laver Compacted?                   |                  | the upper subgrade        |
| Subgrade        |                                       |                  | laver if used             |
| (embankment     | Specific Gravity                      | (2 7)*           | Section 8.6.1             |
| and natural     | Saturated Hydraulic Conductivity      | (5.051e-02)      | 00000110.0.1              |
| soil layers)    | Soil-Water Characteristic Curve       | Calculated       | Section 8.6.4             |
|                 | Water Content                         | Ouloulatou       |                           |
|                 | Dry Unit Weight                       |                  |                           |
|                 | Gradation                             |                  | Section 8.6.1, Table      |
|                 | Plasticity Index                      |                  | 8.18, and Figure 8.3      |
|                 |                                       |                  |                           |
|                 | Thickness inches                      |                  | Section 9.9               |
|                 | Deissen's Detis                       |                  | Section 0.0 Table 0.05    |
|                 | Poisson's Rallo                       | (0 50)*          | Section 8.8, Table 8.25   |
| Stabilized      | Coefficient of Lateral Earth Pressure | (0.50)**         | Not used.                 |
| Subgrade        | Desilient Medulus                     |                  | Section 8.8, Use annual   |
| Laver: Soil     | Resilient Modulus                     |                  | representative modulus    |
| Cement and      | AACUTO Sail Classification            | (^ 1 -)*         | Value, Table 8.25         |
| Lime            | AASHTO Soli Classification            | (A-I-D)*         | Section 8.8               |
| Stabilized Soil | Specific Gravity                      | $(2.7)^{\circ}$  |                           |
| (Assumed to     | Saturated Hydraulic Conductivity      | (1.803e-03)"     |                           |
| be a coarse-    | Soll-water Characteristic Curve       | Calculated       |                           |
| grained soil;   | vvater Content; Optimum               | (9.3)*           | Section 8.8, use default  |
| Ā-1-b)          | Dry Unit Weight; Modified Proctor     | (124.0)^         | values for an A-1-b soli  |
|                 | Gradation                             |                  |                           |
|                 | Plasticity Index                      | (1)*             |                           |
|                 | Liquid Limit                          | (6)^             |                           |
|                 | Thickness, inches                     |                  | Section 8.6               |
|                 | Poisson's Ratio                       |                  | Section 8.6.3, Table      |
|                 |                                       |                  | 8.23                      |
|                 | Coefficient of Lateral Earth Pressure | (0.50)*          | Not used.                 |
|                 | Classification                        | (Crushed Stone)* | Section 8.6.2, Table      |
|                 |                                       |                  | 8.19; software            |
|                 | Resilient Modulus                     |                  | calculates monthly        |
| Unbound         |                                       |                  | resilient modulus         |
| Granular        |                                       |                  | Always check this box     |
| Aggregate       | Is Layer Compacted?                   | Yes              | when the layer is         |
| Base (GAB)      |                                       |                  | compacted.                |
| Layer           | Specific Gravity                      | (2.7)*           | Section 8.6.1; Use        |
|                 | Saturated Hydraulic Conductivity      | (5.054e-02)*     | global default values for |
|                 | Soil-Water Characteristic Curve       | Calculated       | a Crushed Stone           |
|                 | Water Content; Optimum                |                  | Section 8.6.1, Table      |
|                 | Dry Unit Weight; Modified Proctor     |                  | 8.19                      |
|                 | Gradation                             |                  | _                         |
|                 | Plasticity Index                      | (1)*             | Section 8.6.1             |
|                 | Liquid Limit                          | (6)*             |                           |

| Asphalt<br>Stabilized or<br>Treated Base | The inputs for an asphalt stabilized or treated base layer are the same as for an AC/HMA layer |                        | See AC/HMA layer inputs.                   |  |
|------------------------------------------|------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------|--|
|                                          | Thickness, inches                                                                              |                        | Section 8.1 & 8.7                          |  |
| Cement                                   | Unit Weight, pcf<br>Poisson's Ratio                                                            | (150)*<br>(0.20)*      | Section 8.7                                |  |
| Stabilized or                            | Minimum Elastic Modulus, psi                                                                   | (100,000)*             |                                            |  |
| Treated Base                             | 28-day Compressive Strength, psi                                                               |                        | Section 8.7. Table 8.24                    |  |
| Layer                                    | 28-day Elastic/Resilient Modulus, psi                                                          | (4.05)*                | ·                                          |  |
|                                          | I nermal Conductivity                                                                          | (1.25)*                | Section 8.1 & 8.7                          |  |
|                                          |                                                                                                | (0.28)*                |                                            |  |
|                                          | Same inputs as for new AC/HMA<br>layers, except for modulus or condition<br>of existing layer. |                        | Section 8.1 and 8.3                        |  |
| AC/HMA                                   | Number of existing HMA/AC layers                                                               |                        | No more than 2 layers.                     |  |
| (Existing)<br>Layer(s)                   | Thickness after milling                                                                        |                        | Section 7.1.6 and 8.1                      |  |
|                                          | Existing HMA – Backcalculated<br>Modulus                                                       |                        | Section 8.3 (input level 1)                |  |
|                                          | Thickness, inches                                                                              |                        | Section 8.1, Table 8.1                     |  |
|                                          | Unit Weight, pcf                                                                               |                        | Section 8.3.1, Table 8.3                   |  |
|                                          | Effective Asphalt Content by Volume, %                                                         |                        | Section 8.3.1, Table 8.3                   |  |
|                                          | Air Voids, %                                                                                   |                        | Section 8.3.1, Table 8.3                   |  |
|                                          | Poisson's Ratio                                                                                | True<br>(Calculated)*  | Section 8.3.1, use global default values   |  |
|                                          | Dynamic Modulus                                                                                |                        | Section 8.3.3.                             |  |
|                                          | Gradation                                                                                      |                        | Section 8.3.2, Table 8.6                   |  |
| Layers – Base                            | Estar Predictive Model; G*-based model                                                         | False<br>(Calculated)* | Section 8.3.2, use global default equation |  |
| present                                  | Reference Temp., °F                                                                            | (70)*                  | Section 8.3.2, use global default value    |  |
|                                          | Asphalt Binder Grade                                                                           |                        | Section 8.3.2, Table 8.5                   |  |
|                                          | Tensile Strength, psi                                                                          | (Calculated)*          | Section 8.3.3, use global default value    |  |
|                                          | Creep Compliance                                                                               | (Calculated)*          | Section 8.3.2, use global default value    |  |
|                                          | Thermal Conductivity                                                                           | (0.67)*                |                                            |  |
|                                          | Heat Capacity                                                                                  | (0.23)*                | Section 8.3.4, use                         |  |
|                                          | Thermal Contraction                                                                            | (Calculated)*          | giodal default value                       |  |

|                        | Thickness, inches                             |                | Section 8.1, Table 8.1                     |
|------------------------|-----------------------------------------------|----------------|--------------------------------------------|
|                        | Unit Weight, pcf                              |                | Section 8.3.1, Table 8.3                   |
|                        | Effective Asphalt Content by Volume, %        |                | Section 8.3.1, Table 8.3                   |
|                        | Air Voids, %                                  |                | Section 8.3.1, Table 8.3                   |
|                        |                                               | True           | Section 8.3.1, use                         |
|                        | Poisson's Ratio                               | (Calculated)*  | global default values                      |
|                        | Dynamic Modulus                               |                | Section 8.3.3.                             |
|                        | Gradation                                     |                | Section 8.3.2, Table 8.6                   |
| New AC/HMA             | Estar Predictive Model; G*-based              | False          | Section 8.3.2, use                         |
| Layers –               | model                                         | (Calculated)*  | global default equation                    |
| Binder Layer;          | Reference Temp., °F                           | (70)*          | Section 8.3.2, use                         |
| ii present             |                                               | (,             | global default value                       |
|                        | Asphalt Binder Grade                          |                | Section 8.3.2, Table 8.5                   |
|                        | Tensile Strength, psi                         | (Calculated)*  | Section 8.3.3, use global default value    |
|                        | Creep Compliance                              | (Calculated)*  | Section 8.3.2, use global default value    |
|                        | Thermal Conductivity                          | (0.67)*        |                                            |
|                        | Heat Capacity                                 | (0.23)*        | Section 8.3.4, use                         |
|                        | Thermal Contraction                           | (Calculated)*  | giobal default value                       |
|                        | Thickness. inches                             |                | Section 8.1. Table 8.1                     |
|                        | Unit Weight, pcf                              |                | Section 8.3.1, Table 8.3                   |
|                        | Effective Asphalt Content by Volume, %        |                | Section 8.3.1, Table 8.3                   |
|                        | Air Voids, %                                  |                | Section 8.3.1, Table 8.3                   |
|                        | Poisson's Ratio                               | True           | Section 8.3.1, use                         |
|                        |                                               | (Calculated)*  | global default values                      |
|                        | Dynamic Modulus                               |                | Section 8.3.3.                             |
| New AC/HMA             | Gradation                                     | <b>F</b> 1 1 1 | Section 8.3.2, Table 8.6                   |
| Layers –               | Estar Predictive Model; G <sup>*</sup> -based | Faise          | Section 8.3.2, use                         |
| Wearing                | IIIodei                                       | (Calculated)   | Section 8.3.2 use                          |
| Surface or             | Reference Temp., °F                           | (70)*          | dobal default value                        |
| Surface Layer          | Asphalt Binder Grade                          |                | Section 8.3.2. Table 8.5                   |
|                        | Tanaila Otranath, nai                         | (Coloulated)*  | Section 8.3.3, use                         |
|                        | rensile Strength, psi                         | (Calculated)*  | global default value                       |
|                        | Creen Compliance                              | (Calculated)*  | Section 8.3.2, use                         |
|                        |                                               | (Ouloulated)   | global default value                       |
|                        | Thermal Conductivity                          | (0.67)*        | Section 8.3.4, use                         |
|                        | Heat Capacity                                 | (0.23)*        | global default value                       |
|                        | I hermal Contraction                          | (Calculated)"  |                                            |
|                        | Bottom-Up Fatigue Cracking                    |                | Section 9; Table 9.5                       |
|                        | Permanent Deformation (AC Rut Deptn)          |                | Section 9; Table 9.3                       |
|                        | Coarse-Grained Soil                           |                |                                            |
| Georgia                | Permanent Deformation (Rut Depth):            |                | Section 9; Table 9.4                       |
| Calibration<br>Factors | Fine-Grained Soil                             |                |                                            |
|                        | HMA IRI Regression Equation                   |                | Section 9, use global calibration factors. |
|                        | Reflection Cracking                           |                | Section 9, use global                      |
|                        |                                               |                | calibration factors.                       |

## CHECK LIST OF INPUTS FOR NEW AND REHABILITATED RIGID PAVEMENT DESIGNS: JPCP

|                                    | Input Parameter                                             | GDOT Input Value                                                  | Comment                |  |
|------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|------------------------|--|
|                                    | Design Type                                                 | New Pavement,<br>Overlay, or<br>Restoration                       |                        |  |
| General<br>Information             | Pavement Type                                               | AC over JPCP;<br>JPCP over JPCP or<br>CRCP (bonded &<br>unbonded) | Section 3.1.2          |  |
|                                    | Design Life, years                                          | (20)*                                                             | Section 3.3            |  |
|                                    | Base/Subgrade Construction Date                             |                                                                   |                        |  |
|                                    | Pavement Construction Date                                  |                                                                   | Section 3.4; Table 3.2 |  |
|                                    |                                                             |                                                                   | Section (1) Table (1)  |  |
|                                    | Terminal IRI in /mi                                         |                                                                   | Section 4.2 Table 4.6  |  |
| Performance                        | JPCP Transverse (Mid-Slab)                                  |                                                                   |                        |  |
| Criteria                           | Cracking. %                                                 |                                                                   | Section 4.2. Table 4.3 |  |
| •                                  | JPCP Joint Faulting, inches                                 |                                                                   |                        |  |
|                                    | Reliability Level, percent                                  |                                                                   | Section 4.3, Table 4.7 |  |
|                                    | Two-Way Average Annual Daily                                |                                                                   |                        |  |
|                                    | Truck Traffic                                               |                                                                   |                        |  |
|                                    | Number of Lanes in Design Direction                         |                                                                   | Section 5.1            |  |
| Traffic, Site                      | Percent Trucks in Design Direction (DDF)                    | (50)*                                                             |                        |  |
| realures                           | Percent of Trucks in Design Lane<br>(LDF)                   |                                                                   | Section 5.1, Table 5.1 |  |
|                                    | Operational Speed                                           |                                                                   | Section 5.1            |  |
|                                    | Traffic Capacity Cap                                        | (Not Enforced)*                                                   | Section 5.2; not used  |  |
|                                    |                                                             |                                                                   |                        |  |
| General                            | Dual Tire Spacing                                           | (12)*                                                             |                        |  |
| Traffic Ayle                       | Dual Tire Pressure                                          | (120)*                                                            | Section 5.3; use       |  |
| Configuration                      | Tandem Axle Spacing                                         | (51.6)*                                                           | global default values. |  |
| Comgaration                        | Tridem Axle Spacing                                         | (49.2)*                                                           |                        |  |
|                                    | Quad Axle Spacing                                           | (49.2)*                                                           |                        |  |
| Traffic:                           | Mean Wheel Location                                         | (18)*                                                             |                        |  |
| Lateral                            | Wander, Standard Deviation                                  | (10)*                                                             | Section 5.4; use       |  |
| Wander                             | Design Lane Width                                           | (12)*                                                             | global default values. |  |
|                                    | Average Axle Spacing                                        | (40/45/40)*                                                       |                        |  |
| Traffic,                           | (short/medium/long)                                         | (12/15/18)"                                                       | Section 5.5; use       |  |
| Wheelbase                          | Percent Trucks within each axle spacing (short/medium/long) | (17/22/61)*                                                       | global default values. |  |
| * - Default values should be used. |                                                             |                                                                   |                        |  |

|                              | Normalized Vehicle Class<br>Distribution (TTC Group)                                 |                  |                         | Section 5.6, Table 5.2                                                                                                    |
|------------------------------|--------------------------------------------------------------------------------------|------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                              | Growth Rate & Function                                                               |                  |                         | Section 5.6                                                                                                               |
| Traffic;                     | Monthly Adjustm                                                                      | ent Factors      | (Use GDOT<br>Defaults)* | Section 5.7; Tables 5.3 or 5.4                                                                                            |
| volume                       | Hourly Distribution                                                                  | on Factors       | (Use GDOT<br>Defaults)* | Section 5.8, Table 5.5                                                                                                    |
|                              | Number of Axles                                                                      | s per Truck Type | (Use GDOT<br>Defaults)* | Section 5.9, Table 5.6                                                                                                    |
|                              | Single Axles                                                                         |                  |                         |                                                                                                                           |
| Traffic; Axle                | Tandem Axles                                                                         |                  |                         | Section 5 10 <sup>.</sup> Table 5 7                                                                                       |
| Loads                        | Tridem Axles                                                                         |                  |                         |                                                                                                                           |
|                              | Quad Axles                                                                           | 1                |                         |                                                                                                                           |
|                              |                                                                                      | Longitude        |                         |                                                                                                                           |
|                              | Location:                                                                            | Latitude         |                         | Section 6.1                                                                                                               |
| Climate                      |                                                                                      | Elevation, ft.   |                         |                                                                                                                           |
| Climate                      | Depth to Water                                                                       | Table, ft.       |                         | Section 6.2; Table 6.1                                                                                                    |
|                              |                                                                                      | · · · ·          |                         | Section 6.3, 6.5 Table                                                                                                    |
|                              | Climate Station                                                                      |                  |                         | 6.2-6.3                                                                                                                   |
|                              | Shortwave Absorptivity<br>PCC Joint Spacing, ft.                                     |                  | (0.05)*                 | Section 7.2.1; use                                                                                                        |
|                              |                                                                                      |                  | (0.85)*                 | global default value                                                                                                      |
|                              |                                                                                      |                  |                         | Section 7.2.2                                                                                                             |
|                              | Sealant Type                                                                         |                  |                         | Section 7.2.3                                                                                                             |
|                              | Dowelled Joints                                                                      |                  |                         | Section 7.2.4                                                                                                             |
| JPCP Design                  | Widened Slabs                                                                        |                  |                         | Section 7.2.5                                                                                                             |
| Properties                   | Tied Shoulders                                                                       |                  |                         | Section 7.2.6                                                                                                             |
|                              | Erodibility Index                                                                    |                  |                         | Section 7 2 7 Table 7 4                                                                                                   |
|                              | PCC Base Contact Friction                                                            |                  |                         | Section 7.2.8                                                                                                             |
|                              | Permanent Curl/Warp Effective                                                        |                  |                         |                                                                                                                           |
|                              | Temperature Dif                                                                      | ference          | (-10F)*                 | Section 7.2.9                                                                                                             |
| Foundation<br>Support        | oundation Modulus of Subgrade Reaction or upport Resilient Modulus                   |                  | (Calculated)*           | Section 7.2.10                                                                                                            |
| JPCP                         | Same inputs as for new JPCP<br>except for modulus or condition of<br>existing layer. |                  |                         | See PCC Layer                                                                                                             |
| (Existing)<br>Rehabilitation | Slabs cracked or replaced before restoration                                         |                  |                         | Section 7.2.11                                                                                                            |
|                              | Slabs repaired or replaced after restoration                                         |                  |                         | Section 7.2.11                                                                                                            |
|                              | Resilient Modulu                                                                     | ıs, psi          |                         | Section 8.9, Table 8.26,                                                                                                  |
| Bedrock                      | Poisson's Ratio                                                                      |                  |                         | default values are<br>bedrock condition<br>dependent; used only<br>when subgrade<br>thickness is less than<br>100 inches. |
|                              | Unit Weight, pcf                                                                     |                  | (140)*                  | Section 8.9, Table 8.26;<br>used only when<br>subgrade thickness is<br>less than 100 inches.                              |

|                                  | Thickness, inches (if applicable)     |                     | Section 8.6                                                        |
|----------------------------------|---------------------------------------|---------------------|--------------------------------------------------------------------|
|                                  | Poisson's Ratio                       |                     | Section 8.6.3, Table 8.23                                          |
|                                  | Resilient Modulus                     | <br>                | Section 8.6.2, Table 8.20                                          |
|                                  | Coefficient of Lateral Pressure       | (0.50)*             | Not used.                                                          |
| Subgrade                         | Is Layer Compacted?                   |                     | Always check this box for<br>the upper subgrade<br>laver, if used. |
| (embankment                      | Specific Gravity                      | (2.7)*              | Section 8.6.1                                                      |
| and natural                      | Saturated Hydraulic Conductivity      | (5.051e-02)         |                                                                    |
| soil layers)                     | Soil-Water Characteristic Curve       | Calculated          | Section 8.6.4                                                      |
|                                  | Water Content                         |                     | Section 8.6.1, Table                                               |
|                                  | Dry Unit Weight                       | <br>[               | 8.18, and Figure 8.3                                               |
|                                  | Gradation                             |                     |                                                                    |
|                                  | Plasticity Index                      |                     | Section 8.6.1                                                      |
|                                  | Liquid Limit                          |                     |                                                                    |
|                                  | Thickness, inches                     |                     | Section 8.8                                                        |
|                                  | Poisson's Ratio                       |                     | Section 8.8. Table 8.25                                            |
|                                  | Coefficient of Lateral Earth Pressure | (0.50)*             | Not used.                                                          |
| Stabilized                       |                                       |                     | Section 8.8, Use annual                                            |
| Subgrade                         | Resilient Modulus                     |                     | representative modulus                                             |
| Layer; Soil                      |                                       |                     | value; Table 8.25                                                  |
| Cement and                       | AASHTO Soil Classification            | (A-1-b)*            | Section 8.8                                                        |
|                                  | Specific Gravity                      | (2.7)*              |                                                                    |
| Stabilized Soli                  | Saturated Hydraulic Conductivity      | (1.803e-03)*        |                                                                    |
| (Assumed to                      | Soil-Water Characteristic Curve       | Calculated          |                                                                    |
| De a coarse-                     | Water Content; Optimum                | (9.3)*              | Section 8.8, use default                                           |
| 91aineu soii,                    | Dry Unit Weight; Modified Proctor     | (124.0)*            | values for an A-1-b soil                                           |
| A-1-0)                           | Gradation                             | •                   |                                                                    |
|                                  | Plasticity Index                      | (1)*                |                                                                    |
|                                  | Liquid Limit                          | (6)*                |                                                                    |
|                                  | Thickness, inches                     | · · ·               | Section 8.6                                                        |
|                                  | Poisson's Ratio                       |                     | Section 8.6.3, Table 8.23                                          |
|                                  | Coefficient of Lateral Earth Pressure | (0.50)**            | Not used.                                                          |
|                                  | Classification                        | (Crushed<br>Stone)* | Section 8.6.2, Table<br>8.19; software calculates                  |
|                                  | Resilient Modulus                     |                     | monthly resilient modulus                                          |
| Unbound<br>Granular<br>Aggregate | Is Layer Compacted?                   | (Yes)*              | Always check this box<br>when the layer is<br>compacted.           |
| Base (GAB)                       | Specific Gravity                      | (2.7)*              | Section 8.6.1; Use global                                          |
| Layer                            | Saturated Hydraulic Conductivity      | (5.054e-02)*        | default values for a                                               |
| -                                | Soil-Water Characteristic Curve       | Calculated          | Crushed Stone                                                      |
|                                  | Water Content; Optimum                |                     | Section 9.6.1 Table 9.10                                           |
|                                  | Dry Unit Weight; Modified Proctor     |                     |                                                                    |
|                                  | Gradation                             |                     |                                                                    |
|                                  | Plasticity Index                      | (1)*                | Section 8.6.1                                                      |
|                                  | Liquid Limit                          | (6)*                |                                                                    |

|               | Thickness, inches                      |               | Section 8.1 & 8.7        |  |
|---------------|----------------------------------------|---------------|--------------------------|--|
|               | Unit Weight, pcf                       | (150)*        |                          |  |
| Cement        | Poisson's Ratio                        | (0.20)*       | Section 8.7              |  |
| Stabilized or | Minimum Elastic Modulus, psi           | (100,000)     |                          |  |
| Treated Base  | 28-Day Compressive Strength, psi       |               | Section 8.7 Table 8.24   |  |
| Layer         | 28-Day Elastic/Resilient Modulus, psi  |               |                          |  |
|               | Thermal Conductivity                   | (1.25)*       | Section 8 1 & 8 7        |  |
|               | Heat Capacity                          | (0.28)*       |                          |  |
|               | Thickness, inches                      |               | Section 8.1, Table 8.1   |  |
|               | Unit Weight, pcf                       |               | Section 8.3.1, Table 8.3 |  |
|               | Effective Asphalt Content by Volume, % |               | Section 8.3.1, Table 8.3 |  |
|               | Air Voids, %                           |               | Section 8.3.1, Table 8.3 |  |
|               | Poisson's Ratio                        | True          | Section 8.3.1, use       |  |
|               |                                        | (Calculated)* | global default values    |  |
|               | Dynamic Modulus                        |               | Section 8.3.3.           |  |
|               | Gradation                              |               | Section 8.3.2, Table 8.6 |  |
| AC/HMA        | Estar Prodictivo Model: C* based model | False         | Section 8.3.2, use       |  |
| Laver or      |                                        | (Calculated)* | global default equation  |  |
| Interlayer    | Reference Temp °F                      | (70)*         | Section 8.3.2, use       |  |
| ,             |                                        | (10)          | global default value     |  |
|               | Asphalt Binder Grade                   |               | Section 8.3.2, Table 8.5 |  |
|               | Tensile Strength insi                  | (Calculated)* | Section 8.3.3, use       |  |
|               |                                        | (Oalculated)  | global default value     |  |
|               | Creep Compliance                       | (Calculated)* | Section 8.3.2, use       |  |
|               |                                        | (00.000000)   | global default value     |  |
|               | Thermal Conductivity                   | (0.67)*       | Section 8.3.4 use        |  |
|               | Heat Capacity                          | (0.23)*       | dobal default value      |  |
|               | Thermal Contraction                    | (Calculated)* | giobal delault value     |  |

|             | Thickness, inches                            |             |               | Section 8.2, Table 8.1                                               |
|-------------|----------------------------------------------|-------------|---------------|----------------------------------------------------------------------|
|             | Unit Weight, pcf                             |             | (150)*        | Section 8.4.1, Table 8.8                                             |
|             | Poisson's Ratio                              |             | (0.2)*        | Section 8.4.1, Table 8.9                                             |
|             | Coefficient of Thermal Expansion             |             |               | Section 8.4.2, Tables<br>8.10 - 8.11                                 |
|             | Thermal Conductivi                           | ty          | (0.67)*       | Section 9.4.2                                                        |
|             | Heat Capacity                                |             | (0.23)*       | Section 6.4.2                                                        |
|             | Cement Type                                  |             | (Type I)*     |                                                                      |
|             | Cementitious Mater                           | ial Content | (660)*        | Section 8.4.3, Table 8.7                                             |
|             | Water to cement ratio                        |             | (0.45)*       |                                                                      |
| PCC Layer   | Aggregate Type                               |             |               | Section 8.4.3, Tables<br>8.11 - 8.12                                 |
|             | PCC Zero-stress temperature                  |             | (Calculated)* |                                                                      |
|             | Ultimate shrinkage                           |             | (Calculated)* | <ul> <li>Section 8.4.3, Use</li> <li>global default value</li> </ul> |
|             | Reversible shrinkage                         |             | (50)*         |                                                                      |
|             | Time to develop 50% ultimate shrinkage, days |             | (35)*         |                                                                      |
|             | Curing Method                                |             |               | Section 8.4.3                                                        |
|             |                                              | Flexural    | (705)*        |                                                                      |
|             | PCC Strength, psi                            | Compressive | (6097)*       | Section 8.4.4, Tables                                                |
|             | Elastic Modulus, ks                          | i           | (4,500)*      | 0.13 - 0.13                                                          |
| O a america | Mid-Slab Cracking,                           | %           |               | Section 9; Table 9.7                                                 |
| Georgia     | Joint Faulting, inche                        | es          |               | Section 9; Table 9.8                                                 |
| Factors     | IRI, in./mi.                                 |             |               | Section 9; use global calibration factors.                           |

## CHECK LIST OF INPUTS FOR NEW AND REHABILITATED RIGID PAVEMENT DESIGNS: CRCP

|                                    | Input Parameter                                             | GDOT Input Value                                                  | Comment                                |  |
|------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|--|
|                                    | Design Type                                                 | New Pavement,<br>Overlay, or<br>Restoration                       |                                        |  |
| General<br>Information             | Pavement Type                                               | AC over CRCP;<br>CRCP over JPCP or<br>CRCP (bonded &<br>unbonded) | Section 3.1.2                          |  |
|                                    | Design Life, years                                          | (20)*                                                             | Section 3.3                            |  |
|                                    | Base/Subgrade Construction Date                             |                                                                   |                                        |  |
|                                    | Pavement Construction Date                                  |                                                                   | Section 3.4; Table 3.2                 |  |
|                                    | Traffic Opening Date                                        |                                                                   |                                        |  |
|                                    | Initial IRI, in./mi.                                        |                                                                   | Section 4.1, Table 4.1                 |  |
| Performance                        | Terminal IRI, in./mi.                                       |                                                                   | Section 4.2, Table 4.6                 |  |
| Criteria                           | CRCP Punchouts per mile                                     |                                                                   | Section 4.2, Table 4.4                 |  |
|                                    | Reliability Level, percent                                  |                                                                   | Section 4.3, Table 4.7                 |  |
|                                    | Two-Way Average Annual Daily                                |                                                                   |                                        |  |
|                                    | Truck Traffic                                               |                                                                   |                                        |  |
|                                    | Number of Lanes in Design Direction                         |                                                                   | Section 5.1                            |  |
| Traffic, Site                      | Percent Trucks in Design Direction<br>(DDF)                 | (50)*                                                             |                                        |  |
| T Calures                          | Percent of Trucks in Design Lane<br>(LDF)                   |                                                                   | Section 5.1, Table 5.1                 |  |
|                                    | Operational Speed                                           |                                                                   | Section 5.1                            |  |
|                                    | Traffic Capacity Cap                                        | (Not Enforced)*                                                   | Section 5.2; not used                  |  |
|                                    | Avg. Axle Width                                             | (8.5)*                                                            | Section 5.3; use global                |  |
| O a manual                         | Dual Tire Spacing                                           | (12)*                                                             | default values                         |  |
| General<br>Troffic Aylo            | Dual Tire Pressure                                          | (120)*                                                            |                                        |  |
| Configuration                      | Tandem Axle Spacing                                         | (51.6)*                                                           |                                        |  |
| Configuration                      | Tridem Axle Spacing                                         | (49.2)*                                                           |                                        |  |
|                                    | Quad Axle Spacing                                           | (49.2)*                                                           |                                        |  |
| Troffic                            | Mean Wheel Location                                         | (18)*                                                             | Section 5.4                            |  |
| Lateral                            | Wander, Standard Deviation                                  | (10)*                                                             | Section 5.4; use global default values |  |
| wander                             | Design Lane Width                                           | (12)*                                                             | Section 5.4                            |  |
| Traffic,                           | Average Axle Spacing<br>(short/medium/long)                 | (12/15/18)*                                                       | Section 5.5                            |  |
| Wheelbase                          | Percent Trucks within each axle spacing (short/medium/long) | (17/22/61)*                                                       | 3661011 3.3                            |  |
| * - Default values should be used. |                                                             |                                                                   |                                        |  |

|                       | Normalized Vehi                                         | cle Class<br>C Group)             |                         | Section 5.6, Table 5.2                                                                                                    |
|-----------------------|---------------------------------------------------------|-----------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Traffic;<br>Volume    | Growth Rate & F                                         | unction                           |                         | Section 5.6                                                                                                               |
|                       | Monthly Adjustm                                         | ent Factors                       | (Use GDOT<br>Defaults)* | Section 5.7; Tables 5.3 or 5.4                                                                                            |
| volume                | Hourly Distribution                                     | on Factors                        | (Use GDOT<br>Defaults)* | Section 5.8, Table 5.6                                                                                                    |
|                       | Number of Axles                                         | per Truck Type                    | (Use GDOT<br>Defaults)* | Section 5.9, Table 5.5                                                                                                    |
|                       | Single Axles                                            |                                   |                         |                                                                                                                           |
| Traffic; Axle         | Tandem Axles                                            |                                   |                         | Section 5 10 <sup>.</sup> Table 5 7                                                                                       |
| Loads                 | Tridem Axles                                            |                                   | -                       |                                                                                                                           |
|                       | Quad Axles                                              |                                   |                         |                                                                                                                           |
|                       |                                                         | Longitude                         |                         |                                                                                                                           |
|                       | Location:                                               | Latitude                          |                         | Section 6.1                                                                                                               |
| Climate               |                                                         | Elevation, ft.                    |                         | Question C.O. Table C.A                                                                                                   |
|                       | Depth to water I                                        | able, π.                          |                         | Section 6.2; Table 6.1                                                                                                    |
|                       | Climate Station                                         |                                   |                         | 6.2-6.3                                                                                                                   |
| Foundation<br>Support | Modulus of Subg<br>Resilient Modulu                     | rade Reaction or<br>s             | (Calculated)*           | Section 7.2.10                                                                                                            |
|                       | Shortwave Abso                                          | rptivity                          | (0.85)*                 | Section 7.2.1; use global default value                                                                                   |
|                       | Shoulder Type                                           |                                   |                         | Section 7.3                                                                                                               |
| CRCP                  | Permanent Curl/<br>Temperature Diff                     | Warp Effective<br>ference         | (-10F)*                 | Section 7.2.9                                                                                                             |
| Design                | Steel, percent re                                       | inforcement                       |                         |                                                                                                                           |
| Properties            | Bar Diameter, in                                        |                                   |                         | Section 7.3                                                                                                               |
|                       | Steel Depth, in.                                        |                                   |                         |                                                                                                                           |
|                       | Base/Slab Frictio                                       | on Coefficient                    |                         | Section 7.3, Table 7.5                                                                                                    |
|                       | Generate Crack                                          | Spacing                           | (True)*                 | Software calculates<br>crack spacing.                                                                                     |
| CPCP<br>(Existing)    | Same inputs as f<br>except for modul<br>existing layer. | or new CRCP<br>us or condition of |                         | See PCC Layer for<br>CRCP                                                                                                 |
| Renabilitation        | Number of Punc                                          | houts per mile                    |                         | Section 7.3                                                                                                               |
|                       | Resilient Modulu                                        | s, psi                            |                         | Section 8.9, Table 8.26,                                                                                                  |
| Bedrock               | Poisson's Ratio                                         |                                   |                         | default values are<br>bedrock condition<br>dependent; used only<br>when subgrade<br>thickness is less than<br>100 inches. |
|                       | Unit Weight, pcf                                        |                                   | (140)*                  | Section 8.9, Table 8.26;<br>used only when<br>subgrade thickness is<br>less than 100 inches.                              |

|                                                         | Thickness, inches (if applicable)     |                                                   | Section 8.6                                                        |  |
|---------------------------------------------------------|---------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|--|
|                                                         | Poisson's Ratio                       |                                                   | Section 8.6.3, Table 8.23                                          |  |
|                                                         | Resilient Modulus                     |                                                   | Section 8.6.2, Table 8.20                                          |  |
|                                                         | Coefficient of Lateral Pressure       | (0.50)*                                           | Not used.                                                          |  |
| Subgrade                                                | Is Layer Compacted?                   |                                                   | Always check this box for<br>the upper subgrade<br>layer, if used. |  |
| (embankment                                             | Specific Gravity                      | (2.7)*                                            | Section 8.6.1                                                      |  |
| and natural                                             | Saturated Hydraulic Conductivity      | (5.051e-02)                                       |                                                                    |  |
| soli layers)                                            | Soil-Water Characteristic Curve       | Calculated                                        | Section 8.6.4                                                      |  |
|                                                         | Water Content                         |                                                   | Section 8.6.1, Table                                               |  |
|                                                         | Dry Unit Weight                       |                                                   | 8.18, and Figure 8.3                                               |  |
|                                                         | Gradation                             |                                                   |                                                                    |  |
|                                                         | Plasticity Index                      | Section 8.6.1                                     |                                                                    |  |
|                                                         | Liguid Limit                          |                                                   |                                                                    |  |
|                                                         | Thickness, inches                     |                                                   | Section 8.8                                                        |  |
|                                                         | Poisson's Ratio                       |                                                   | Section 8.8. Table 8.25                                            |  |
| Stabilized<br>Subgrade                                  | Coefficient of Lateral Earth Pressure | (0.50)*                                           | Not used.                                                          |  |
|                                                         | Resilient Modulus                     |                                                   | Section 8.8, Use annual representative modulus value; Table 8.25   |  |
|                                                         | AASHTO Soil Classification            | (A-1-b)*                                          | Section 8.8                                                        |  |
| Layer, Soll                                             | Specific Gravity                      | (2.7)*                                            |                                                                    |  |
|                                                         | Saturated Hydraulic Conductivity      | (1.803e-03)*                                      |                                                                    |  |
| Stabilized Soil                                         | Soil-Water Characteristic Curve       | Calculated                                        |                                                                    |  |
| Stabilized Soli                                         | Water Content; Optimum                | Section 8.8, use default values for an A-1-b soil |                                                                    |  |
|                                                         | Dry Unit Weight; Modified Proctor     |                                                   |                                                                    |  |
|                                                         | Gradation                             |                                                   |                                                                    |  |
|                                                         | Plasticity Index                      |                                                   |                                                                    |  |
|                                                         | Liquid Limit                          | (6)*                                              |                                                                    |  |
|                                                         | Thickness, inches                     |                                                   | Section 8.6                                                        |  |
|                                                         | Poisson's Ratio                       |                                                   | Section 8.6.3, Table 8.23                                          |  |
|                                                         | Coefficient of Lateral Earth Pressure | (0.50)**                                          | Not used.                                                          |  |
|                                                         | Classification                        | (Crushed<br>Stone)*                               | Section 8.6.2, Table<br>8.19; software calculates                  |  |
|                                                         | Resilient Modulus                     |                                                   | monthly resilient modulus                                          |  |
| Unbound<br>Granular<br>Aggregate<br>Base (GAB)<br>Layer | Is Layer Compacted?                   | (Yes)*                                            | Always check this box<br>when the layer is<br>compacted.           |  |
|                                                         | Specific Gravity                      | (2.7)*                                            | Section 8.6.1; Use global                                          |  |
|                                                         | Saturated Hydraulic Conductivity      | (5.054e-02)*                                      | default values for a                                               |  |
|                                                         | Soil-Water Characteristic Curve       | Calculated                                        | Crushed Stone                                                      |  |
|                                                         | Water Content; Optimum                | (7.4)*                                            | Section 8.6.1 Table 8.10                                           |  |
|                                                         | Dry Unit Weight; Modified Proctor     | (127.2)*                                          | Section 8.6.1, Table 8.19                                          |  |
|                                                         | Gradation                             |                                                   |                                                                    |  |
|                                                         | Plasticity Index                      | (1)*                                              | Section 8.6.1                                                      |  |
|                                                         | Liquid Limit                          | (6)*                                              |                                                                    |  |

|               | Thickness, inches                     |               | Section 8.1 & 8.7        |  |
|---------------|---------------------------------------|---------------|--------------------------|--|
| Cement        | Unit Weight, pcf                      | (150)*        |                          |  |
|               | Poisson's Ratio                       | (0.20)*       | Section 8.7              |  |
| Stabilized or | Minimum Elastic Modulus, psi          | (100,000)     |                          |  |
| Treated Base  | 28-Day Compressive Strength, psi      |               | Section 8.7 Table 8.24   |  |
| Layer         | 28-Day Elastic/Resilient Modulus, psi |               |                          |  |
|               | Thermal Conductivity                  | (1.25)*       | Section 8 1 & 8 7        |  |
|               | Heat Capacity                         | (0.28)*       | 0001011011001            |  |
|               | Thickness, inches                     |               | Section 8.1, Table 8.1   |  |
|               | Unit Weight, pcf                      |               | Section 8.3.1, Table 8.3 |  |
|               | Effective Asphalt Content by Volume,  |               | Section 9.3.1 Table 9.3  |  |
|               | %                                     |               |                          |  |
|               | Air Voids, %                          |               | Section 8.3.1, Table 8.3 |  |
|               | Poisson's Patio                       | True          | Section 8.3.1, use       |  |
|               |                                       | (Calculated)* | global default values    |  |
|               | Dynamic Modulus                       |               | Section 8.3.3.           |  |
|               | Gradation                             |               | Section 8.3.2, Table 8.6 |  |
| AC/HMA        | Estar Predictive Model; G*-based      | False         | Section 8.3.2, use       |  |
| Layer or      | model                                 | (Calculated)* | global default equation  |  |
| Interlayer    | Reference Temp °F                     | (70)*         | Section 8.3.2, use       |  |
|               |                                       | (10)          | global default value     |  |
|               | Asphalt Binder Grade                  |               | Section 8.3.2, Table 8.5 |  |
|               | Tensile Strength, psi                 | (Calculated)* | Section 8.3.3, use       |  |
|               |                                       | (Oulouldica)  | global default value     |  |
|               | Creep Compliance                      | (Calculated)* | Section 8.3.2, use       |  |
|               |                                       | (00.000)      | global default value     |  |
|               | I hermal Conductivity                 | (0.67)*       | Section 8.3.4 use        |  |
|               | Heat Capacity                         | (0.23)*       | dobal default value      |  |
|               | Thermal Contraction                   | (Calculated)* | giobal delault value     |  |

|                        | Thickness, inches                     |               |               | Section 8.2, Table 8.1                     |
|------------------------|---------------------------------------|---------------|---------------|--------------------------------------------|
|                        | Unit Weight, pcf                      |               | (150)*        | Section 8.4.1, Table 8.8                   |
|                        | Poisson's Ratio                       |               | (0.2)*        | Section 8.4.1, Table 8.9                   |
|                        | Coefficient of Thern                  | nal Expansion |               | Section 8.4.2, Tables<br>8.10 - 8.11       |
|                        | Thermal Conductivi                    | ty            | (0.67)*       | Section 8.4.2                              |
|                        | Heat Capacity                         |               | (0.23)*       | Section 6.4.2                              |
|                        | Cement Type                           |               | (Type I)*     |                                            |
|                        | Cementitious Mater                    | ial Content   | (660)*        | Section 8.4.3, Table 8.7                   |
|                        | Water to cement rat                   | tio           | (0.45)*       |                                            |
| PCC Layer              | Aggregate Type                        |               |               | Section 8.4.3, Tables<br>8.11 - 8.12       |
|                        | PCC Zero-stress te                    | mperature     | (Calculated)* |                                            |
|                        | Ultimate shrinkage                    |               | (Calculated)* | Section 8.4.2 Line                         |
|                        | Reversible shrinkag                   | e             | (50)*         | dobal default value                        |
|                        | Time to develop 50<br>shrinkage, days | % ultimate    | (35)*         |                                            |
|                        | Curing Method                         |               |               | Section 8.4.3                              |
|                        |                                       | Flexural      | (705)*        |                                            |
|                        | PCC Strength, psi                     | Compressive   | (6097)*       | Section 8.4.4, Tables                      |
|                        | Elastic Modulus, ks                   | İ             | (4,500)*      | 0.15 - 0.15                                |
| Georgia CRCP           | Number of Puncho                      | outs per mile |               | Section 9; Table 9.9                       |
| Calibration<br>Factors | IRI, in./mi.                          |               |               | Section 9; Use global calibration factors. |

## APPENDIX A—HMA DATABASE (KIM ET AL., 2019)

|                               |               |                              |              | Table A   | .1           |                                      |                                                |
|-------------------------------|---------------|------------------------------|--------------|-----------|--------------|--------------------------------------|------------------------------------------------|
| Mixture Type:                 | A 12.5_64     | M1                           |              |           |              | XML File:                            | L*_PG64_12.5_A_R3-LG                           |
|                               |               |                              |              | Level 1   |              |                                      |                                                |
| Asphalt Mix: D                | ynamic Modu   | lus Table                    |              |           |              |                                      |                                                |
| Temperature Mixture  E* , psi |               |                              | _            | _         |              |                                      |                                                |
| (°F)                          | 0.1 Hz        | 0.5 Hz                       | 1 Hz         | 5 Hz      | 10 Hz        | 25 Hz                                |                                                |
| 39.2                          | 740,802       | 1,082,794                    | 1,202,705    | 1,586,888 | 1,706,096    | 1,924,615                            |                                                |
| 68                            | 150,334       | 278,518                      | 336,268      | 564,559   | 658,669      | 818,440                              |                                                |
| 104                           | 24,296        | 46,335                       | 58,625       | 113,719   | 142,644      | 198,566                              |                                                |
| 130                           | 11,119        | 19,491                       | 24,290       | 46,322    | 58,611       | 83,996                               |                                                |
| Asphalt Binder:               | : Superpaye B | inder Test Data              |              |           | Asphalt Ge   | neral: Volumetric Proper             | rties as Built                                 |
| Temperature                   | Angular Fr    | eq. = $10 \text{ rad/sec}$   |              | 7         | Effective Bi | nder Content (%)                     | 12.5                                           |
| (°F)                          | G* (Pa)       | Delta (degre                 | e)           | 1         | Air Voids (  | %)                                   | 5.5                                            |
| 147.2                         | 8850          | 79.1                         | ,            | -         | Total Unit V | Veight (pcf)                         | 145                                            |
| 158                           | 4220          | 82                           |              | -         |              | 8 4 /                                |                                                |
| 168.8                         | 2070          | 84.1                         |              | -         |              |                                      |                                                |
| 10010                         | 2070          | 0                            |              | Level 2   |              |                                      |                                                |
| Asphalt Mix: A                | ggregate Grad | lation                       |              |           |              |                                      |                                                |
| 1                             | Cumulative    | e % Retained                 | Percent Pass | sing      | 7            |                                      |                                                |
| 3/4 Inch Sieve                | 0             |                              | 100          | 8         | -            |                                      |                                                |
| 3/8 Inch Sieve                | 14            |                              | 86           |           | -            |                                      |                                                |
| #4 Sieve                      | 26            |                              | 74           |           |              |                                      |                                                |
| #200 Sieve                    | 94.2          |                              | 5.8          |           |              |                                      |                                                |
| Asnhalt Binder                | • Supernave B | inder Test Data              | 1            |           | Asnhalt Ca   | noral · Volumetric Prope             | rties as Built                                 |
| Tommonotuno                   | Angular Fr    | $e_{a} = 10 \text{ rad/sec}$ |              | 1         | Effective Bi | nder Content (%)                     | 12.5                                           |
| (°F)                          | G* (Pa)       | Delta (degre                 | e)           | -         | Air Voids (  | (70)                                 | 5 5                                            |
| 147.2                         | 8850          | 79.1                         | -,           | -         | Total Unit V | Veight (ncf)                         | 145                                            |
| 158                           | 4220          | 82                           |              | 1         | 10th Ohit (  | o*** (P**)                           |                                                |
| 168.8                         | 2070          | 84.1                         |              | _         |              |                                      |                                                |
| 10010                         | 2070          | 0                            |              | Level 3   |              |                                      |                                                |
| Asphalt Mix: A                | ggregate Grad | lation                       |              |           |              | <b>Asphalt General:</b> Vol<br>Built | lumetric Properties as                         |
|                               | Cumulative    | e % Retained                 | Percent Pass | sing      | ]            | Effective Binder Conte               | ent 12.5                                       |
| 3/4 Inch Sieve                | 0             |                              | 100          |           | 1            | Air Voids (%)                        | 5.5                                            |
| 3/8 Inch Sieve                | 14            |                              | 86           |           | 1            | Total Unit Weight (pc                | f) 145                                         |
| #4 Sieve                      | 26            |                              | 74           |           | 1            | 6 (1-                                | <u>·                                      </u> |
| #200 Sieve                    | 94.2          |                              | 5.8          |           | 1            |                                      |                                                |
|                               | 1             |                              | 1            |           | <b>_</b>     |                                      |                                                |
| Asphalt Binder:               | : Superpave B | inder Grading:               |              | PG 64-22  | 7            |                                      |                                                |
|                               | -             |                              |              |           |              |                                      |                                                |

Note: The table summarizes the test data using extracted asphalt binder from asphalt plant mix.

|                   |                                          |                 |              | Table     | <u>A.Z</u>    |                               |                                     |
|-------------------|------------------------------------------|-----------------|--------------|-----------|---------------|-------------------------------|-------------------------------------|
| Mixture Type:     | A.12.5_64                                | 4_M2            |              |           |               | XML File:                     | L*_PG64_12.5_A_R3-FP                |
|                   |                                          |                 |              | Level     | 1             |                               |                                     |
| Asphalt Mix: Dyna | amic Modul                               | us Table        |              |           |               |                               |                                     |
| Tomporatura (0E)  | Mixture  I                               | ∃* , psi        |              |           |               |                               |                                     |
| Temperature (-1-) | 0.1 Hz                                   | 0.5 Hz          | 1 Hz         | 5 Hz      | 10 Hz         | 25 Hz                         |                                     |
| 39.2              | 913,266                                  | 1,203,332       | 1,342,315    | 1,646,168 | 1,775,603     | 1,961,809                     |                                     |
| 68                | 196,746                                  | 348,622         | 411,796      | 649,274   | 741,030       | 894,448                       |                                     |
| 104               | 33,991                                   | 70,120          | 89,932       | 173,205   | 212,727       | 301,364                       |                                     |
| 130               | 19,970                                   | 39,240          | 55,296       | 102,271   | 139,928       | 188,459                       |                                     |
| Asphalt Binder: S | uperpave Bi                              | inder Test Dat  | a            |           | Asphalt Ge    | eneral: Volumetr              | ic Properties as Built              |
| T ( (aF)          | Angular F                                | Freq. = 10 rad/ | sec          |           | Effective B   | inder Content (%              | ) 12.2                              |
| Temperature (°F)  | G* (Pa)                                  | Delta (degre    | ee)          |           | Air Voids (   | %)                            | 5.5                                 |
| 147.2             | 27500                                    | 73.7            |              |           | Total Unit V  | Weight (pcf)                  | 145                                 |
| 158               | 10800                                    | 76.8            |              |           |               |                               |                                     |
| 168.8 6600 79.2   |                                          |                 |              |           |               |                               |                                     |
|                   |                                          |                 |              | Level     | 2             |                               |                                     |
| Asphalt Mix: Agg  | regate Grada                             | ation           |              |           | _             |                               |                                     |
|                   | Cumulative %<br>Retained Percent Passing |                 |              |           |               |                               |                                     |
| 3/4 Inch Sieve    |                                          | 0               | 1            | 00        |               |                               |                                     |
| 3/8 Inch Sieve    |                                          | 12              | 8            | 38        |               |                               |                                     |
| #4 Sieve          |                                          | 27              | 7            | 73        |               |                               |                                     |
| #200 Sieve        | 9                                        | 4.1             | 5            | .9        |               |                               |                                     |
|                   |                                          |                 |              |           |               |                               |                                     |
| Asphalt Binder: S | uperpave Bi                              | inder Test Dat  | a            | 7         | Asphalt Ge    | eneral: Volumetr              | ic Properties as Built              |
| Temperature (°F)  | Angular F                                | Freq. = 10 rad/ | sec          | _         | Effective B   | ) 12.2                        |                                     |
| Temperature (T)   | G* (Pa)                                  | Delta (degre    | ee)          | _         | Air Voids (%) |                               | 5.5                                 |
| 147.2             | 27500                                    | 73.7            |              | -         | Total Unit V  | Weight (pcf)                  | 145                                 |
| 158               | 10800                                    | 76.8            |              | _         |               |                               |                                     |
| 168.8             | 6600                                     | 79.2            |              |           |               |                               |                                     |
|                   |                                          |                 |              | Level     | 3             |                               |                                     |
| Asphalt Mix: Agg  | regate Grada                             | ation           |              |           |               | Asphalt Gene                  | ral: Volumetric Properties as Built |
|                   | Cumulativ<br>Retained                    | we %            | Percent Pass | sing      |               | Effective Bind<br>Content (%) | er 12.2                             |
| 3/4 Inch Sieve    |                                          | 0               | 1            | 00        | ]             | Air Voids (%)                 | 5.5                                 |
| 3/8 Inch Sieve    |                                          | 12              | 8            | 38        |               | Total Unit We<br>(pcf)        | ight 145                            |
| #4 Sieve          |                                          | 27              | 6            | 51        | ]             |                               | · · ·                               |
| #200 Sieve        |                                          | 5.9             | 5.           | 5.1       | J             |                               |                                     |
|                   |                                          |                 |              | 1         | 1             |                               |                                     |
| Asphalt Binder: S | uperpave Bi                              | nder Grading    | :            | PG 64-22  |               |                               |                                     |

Note: The table summarizes the test data using extracted asphalt binder from asphalt plant mix.

|                   |                       |                |             | Table     | A.3                     |                               |                                     |
|-------------------|-----------------------|----------------|-------------|-----------|-------------------------|-------------------------------|-------------------------------------|
| Mixture Type:     | A 12.5_67             | 7_N            |             |           |                         | XML File:                     | L*_PG67_12.5_A_R2                   |
|                   |                       |                |             | Level     | 1                       |                               |                                     |
| Asphalt Mix: Dyna | amic Modul            | us Table       |             |           |                         |                               |                                     |
| Temperature (°F)  | Mixture  I            | E* , psi       |             |           |                         |                               |                                     |
| Temperature (T)   | 0.1 Hz                | 0.5 Hz         | 1 Hz        | 5 Hz      | 10 Hz                   | 25 Hz                         |                                     |
| 39.2              | 787,225               | 1,089,505      | 1,207,067   | 1,545,325 | 1,661,798               | 1,870,709                     |                                     |
| 68                | 192,088               | 325,597        | 382,568     | 599,750   | 686,073                 | 833,912                       |                                     |
| 104               | 38,301                | 66,256         | 82,046      | 142,791   | 175,827                 | 228,559                       |                                     |
| 130               | 18,543                | 29,902         | 37,036      | 63,196    | 79,242                  | 104,091                       |                                     |
| Asphalt Binder: S | uperpave Bi           | inder Test Dat | a           |           | Asphalt Ge              | eneral: Volumetri             | ic Properties as Built              |
|                   | Angular F             | Freq. = 10 rad | 'sec        | ]         | Effective B             | inder Content (%)             | ) 11.8                              |
| Temperature (°F)  | G* (Pa)               | Delta (degr    | ee)         |           | Air Voids (             | %)                            | 6.3                                 |
| 147.2             | 147.2                 | 26             | 600         | -         | Total Unit V            | Weight (pcf)                  | 145                                 |
| 158               | 158                   | 12             | 400         |           |                         |                               |                                     |
| 168.8             | 168.8                 | 57             | /80         |           |                         |                               |                                     |
| 10010             | 10010                 |                |             | Level     | 2                       |                               |                                     |
| Asphalt Mix. Aga  | regate Grade          | ation          |             | Level     | 2                       |                               |                                     |
| Aspirati Mix. Agg | Cumulativ             | ve %           | Percent Pas | sing      | ]                       |                               |                                     |
| 2/4 Inch Sigue    | Retained              | 0              | 1           | 00        | _                       |                               |                                     |
| 2/9 Inch Sieve    |                       | 0<br>12        | 1           | 00        |                         |                               |                                     |
|                   |                       | 15             | 6           | 5/        | -                       |                               |                                     |
| #4 Sieve          |                       | 25             | 1           | 15        | _                       |                               |                                     |
| #200 Sieve        | 9                     | 3.7            | 6           | .3        |                         |                               |                                     |
| Asphalt Binder: S | uperpave Bi           | inder Test Dat | a           |           | Asphalt Ge              | eneral: Volumetri             | ic Properties as Built              |
|                   | Angular F             | Freq. = 10 rad | 'sec        | ]         | Effective B             | inder Content (%)             | ) 11.8                              |
| Temperature (°F)  | G* (Pa)               | Delta (degr    | ee)         |           | Air Voids (%)           |                               | 6.3                                 |
| 147               | 26600                 | 72.1           | ,           | -         | Total Unit Weight (pcf) |                               | 145                                 |
| 158               | 12400                 | 75.3           |             |           |                         | 8 4 7                         | L                                   |
| 150               | 5780                  | 78.5           |             |           |                         |                               |                                     |
| 109               | 5780                  | 70.5           |             | Level     | 3                       |                               |                                     |
| Asnhalt Mix. Aga  | regate Grad           | ation          |             |           | -                       | Asnhalt Gene                  | ral. Volumetric Properties as Built |
| Asphart Mix. Agg. |                       | ation          |             |           | _                       | Asphare Gener                 | Tal. Volumente i Topentes as Dunt   |
|                   | Cumulativ<br>Retained | ve %           | Percent Pas | sing      |                         | Effective Bind<br>Content (%) | er 11.8                             |
| 3/4 Inch Sieve    |                       | 0              | 1           | 00        |                         | Air Voids (%)                 | 6.3                                 |
| 3/8 Inch Sieve    |                       | 13             | 8           | 37        |                         | Total Unit Wei<br>(pcf)       | ght 145                             |
| #4 Sieve          |                       | 25             | (           | 52        | ]                       | <u> </u>                      |                                     |
| #200 Sieve        | (                     | 6.3            | 5:          | 5.7       |                         |                               |                                     |
|                   |                       |                |             |           | -                       |                               |                                     |
| Asphalt Binder: S | uperpave Bi           | inder Grading  | :           | PG 67-22  |                         |                               |                                     |

Note: The table summarizes the test data using extracted asphalt binder from asphalt plant mix.

| Table A.4                                 |                |                                |               |           |                  |                            |                            |  |
|-------------------------------------------|----------------|--------------------------------|---------------|-----------|------------------|----------------------------|----------------------------|--|
| Mixture Type:                             | A 12.5_76_     | N                              |               |           |                  | XML File:                  | L*_PG76_12.5_A_R2          |  |
|                                           |                |                                |               | Level 1   |                  |                            |                            |  |
| Asphalt Mix: Dyna                         | amic Modulus   | Table                          |               |           |                  |                            |                            |  |
| Tomenonationa (0E)                        | Mixture  E*    | , psi                          |               |           |                  |                            |                            |  |
| Temperature (°F)                          | 0.1 Hz         | 0.5 Hz                         | 1 Hz          | 5 Hz      | 10 Hz            | 25 Hz                      |                            |  |
| 39.2                                      | 829,119        | 1,118,111                      | 1,264,046     | 1,585,167 | 1,726,851        | 1,930,605                  |                            |  |
| 68                                        | 177,587        | 304,657                        | 359,764       | 573,195   | 658,991          | 807,522                    |                            |  |
| 104                                       | 35,227         | 59,261                         | 73,824        | 127,260   | 158,583          | 205,713                    |                            |  |
| 130                                       | 18,567         | 29,167                         | 35,573        | 60,107    | 74,603           | 98,547                     |                            |  |
| Asphalt Binder: S                         | uperpave Bind  | ler Test Data                  |               | _         | Asphalt Gen      | eral: Volumetric           | Properties as Built        |  |
| T                                         | Angular Fre    | eq. = 10 rad/sec               |               |           | Effective Bin    | der Content (%)            | 12.6                       |  |
| Temperature (°F)                          | G* (Pa)        | Delta (degree                  | )             | -         | Air Voids (%     | )                          | 5.7                        |  |
| 158                                       | 14100          | 65.8                           |               |           | Total Unit W     | eight (pcf)                | 145                        |  |
| 168.8                                     | 6770           | 67.2                           |               |           |                  |                            |                            |  |
| 179.6                                     | 8140           | 67.8                           |               |           |                  |                            |                            |  |
|                                           |                |                                |               | Level 2   |                  |                            |                            |  |
| Asphalt Mix: Agg                          | regate Gradati | on                             |               |           |                  |                            |                            |  |
|                                           | Cumulative     | % Retained                     | Percent Passi | ng        | ]                |                            |                            |  |
| 3/4 Inch Sieve                            | 0              |                                |               | 00        |                  |                            |                            |  |
| 3/8 Inch Sieve                            |                | 10                             | ç             | 90        |                  |                            |                            |  |
| #4 Sieve                                  |                | 27                             | 7             | 73        |                  |                            |                            |  |
| #200 Sieve                                | 9              | 3.7                            | 6             | .3        |                  |                            |                            |  |
| Asnhalt Binder: S                         | uperpaye Bin   | ler Test Data                  |               |           | -<br>Asnhalt Con | aral. Volumetric           | Properties as Built        |  |
|                                           | Angular Fre    | ra = 10 rad/sec                |               | 1         | Effective Bin    | der Content (%)            | 12.6                       |  |
| Temperature (°F)                          | G* (Da)        | Delta (degree                  | )             |           | Air Voids (%)    |                            | 5.7                        |  |
| 150                                       | 14100          | 65.9                           | )             |           | Total Unit W     | )<br>oight (nof)           | 145                        |  |
| 158                                       | 14100          | 67.2                           |               |           | Total Ollit W    | eignt (pei)                | 145                        |  |
| 168.8                                     | 6//0           | 07.2                           |               |           |                  |                            |                            |  |
| 179.6                                     | 8140           | 0/.8                           |               | Laval 2   |                  |                            |                            |  |
| Asphalt Mix: Agg                          | regate Gradati | on                             |               | Level 5   |                  | Asphalt Gene               | ral: Volumetric Properties |  |
|                                           | -              |                                | [             |           | 1                |                            |                            |  |
|                                           | Cumulative     | lative % Retained Percent Pass |               | ng        |                  | Binder<br>Content (%)      | 12.6                       |  |
| 3/4 Inch Sieve                            | 0 100          |                                |               |           |                  | Air Voids (%)              | 5.7                        |  |
| 3/8 Inch Sieve                            |                | 10                             | 90            |           |                  | Total Unit<br>Weight (pcf) | 145                        |  |
| #4 Sieve                                  |                | 27                             | 63            |           |                  |                            |                            |  |
| #200 Sieve                                |                | 6.3                            | 56.7          |           | ]                |                            |                            |  |
|                                           |                |                                |               |           | 1                |                            |                            |  |
| Asphalt Binder: Superpave Binder Grading: |                |                                |               | PG 76-22  |                  |                            |                            |  |

Notes: The table summarizes the test data using extracted asphalt binder from asphalt plant mix.

|                   |                |                            |              | Table A         | .5                                |                                 |                            |
|-------------------|----------------|----------------------------|--------------|-----------------|-----------------------------------|---------------------------------|----------------------------|
| Mixture Type:     | A 19_64_N      | i                          |              |                 |                                   | XML File:                       | L*_PG64_19_A_R2            |
|                   |                |                            |              | Level 1         |                                   |                                 |                            |
| Asphalt Mix: Dyna | amic Modulus   | s Table                    |              |                 |                                   |                                 |                            |
| Temperature (°F)  | Mixture  E*    | i, psi                     |              |                 |                                   |                                 |                            |
| remperature (1)   | 0.1 Hz         | 0.5 Hz                     | 1 Hz         | 5 Hz            | 10 Hz                             | 25 Hz                           |                            |
| 39.2              | 1,080,201      | 1,378,093                  | 1,534,188    | 1,835,810       | 1,977,396                         | 2,154,776                       |                            |
| 68                | 259,963        | 430,811                    | 501,396      | 759,378         | 859,191                           | 1,021,609                       |                            |
| 104               | 49,660         | 86,728                     | 108,870      | 187,266         | 232,492                           | 296,430                         |                            |
| 130               | 24,494         | 41,822                     | 51,610       | 91,408          | 113,125                           | 150,931                         |                            |
| Asphalt Binder: S | uperpave Bin   | der Test Data              |              | _               | Asphalt Ge                        | eneral: Volumetric              | Properties as Built        |
| T (aF)            | Angular Fre    | eq. = 10 rad/se            | c            |                 | Effective Bi                      | inder Content (%)               | 11.6                       |
| Temperature (°F)  | G* (Pa)        | Delta (degre               | ee)          | 1               | Air Voids (                       | %)                              | 5.5                        |
| 147.2             | 49700          | 60.4                       |              |                 | Total Unit V                      | Weight (pcf)                    | 145                        |
| 158               | 31300          | 62.2                       |              |                 |                                   |                                 |                            |
| 168.8             | 16500          | 63.7                       |              | 1               |                                   |                                 |                            |
|                   |                |                            |              | Level 2         |                                   |                                 |                            |
| Asphalt Mix: Agg  | regate Gradati | ion                        |              |                 |                                   |                                 |                            |
| <u> </u>          | Cumulative     | % Retained                 | Percent Pas  | sino            | 1                                 |                                 |                            |
| 3/4 Inch Sieve    | Culture        | 5                          |              | 5115            | -                                 |                                 |                            |
| 3/8 Inch Sieve    | 1              | <u> </u>                   | ,<br>,       | <u>75</u><br>20 | 4                                 |                                 |                            |
| #4 Sieve          | <u>،</u>       | 7                          |              | 59<br>72        | -                                 |                                 |                            |
| #200 Sieve        | 0              | 4.0                        | 5            | : 0             | 4                                 |                                 |                            |
| #200 Bleve        | 7.             | +.2                        | J J          | .8              | ]                                 |                                 |                            |
| Asphalt Binder: S | uperpave Bind  | der Test Data              |              | _               | Asphalt Ge                        | eneral: Volumetric              | Properties as Built        |
| T                 | Angular Fre    | eq. = $10 \text{ rad/sec}$ | c            |                 | Effective Binder Content (%) 11.6 |                                 |                            |
| Temperature (°F)  | G* (Pa)        | Delta (degre               | ee)          |                 | Air Voids (                       | %)                              | 5.5                        |
| 147.2             | 49700          | 60.4                       |              | 1               | Total Unit V                      | Weight (pcf)                    | 145                        |
| 158               | 31300          | 62.2                       |              | 1               |                                   |                                 | I                          |
| 168.8             | 16500          | 63.7                       |              | 1               |                                   |                                 |                            |
|                   |                |                            |              | Level 3         |                                   |                                 |                            |
| Asphalt Mix: Agg  | regate Gradati | ion                        |              |                 |                                   | <b>Asphalt General</b><br>Built | : Volumetric Properties as |
|                   | Cumulative     | % Retained                 | Percent Pass | sing            | ]                                 | Effective Binder<br>Content (%) | 11.6                       |
| 3/4 Inch Sieve    |                | 5                          | 95           |                 | 1                                 | Air Voids (%)                   | 5.5                        |
| 3/8 Inch Sieve    |                | 11                         | 84           |                 | 1                                 | Total Unit Weigh<br>(pcf)       | ıt 145                     |
| #4 Sieve          |                | 27                         | 57           |                 |                                   |                                 |                            |
| #200 Sieve        |                | 5.8                        | 51.2         |                 |                                   |                                 |                            |
| Asnhalt Binder: S | uperpaye Bin   | der Grading:               |              | PG 64-22        | 1                                 |                                 |                            |

Notes: The table summarizes the test data using extracted asphalt binder from asphalt plant mix.
|                    |                |                  |              | Table A   | .6                |                              |          |                        |
|--------------------|----------------|------------------|--------------|-----------|-------------------|------------------------------|----------|------------------------|
| Mixture Type:      | A 19_64_N      | 2                |              |           |                   | XML<br>File:                 | L        | *_PG64_19_A_R1         |
|                    |                |                  |              | Level 1   |                   |                              |          |                        |
| Asphalt Mix: Dyna  | amic Modulus   | Table            |              |           |                   |                              |          |                        |
| Temperature (°F)   | Mixture  E*    | , psi            |              |           |                   |                              |          |                        |
| 1 ( )              | 0.1 Hz         | 0.5 Hz           | 1 Hz         | 5 Hz      | 10 Hz             | 25 Hz                        |          |                        |
| 39.2               | 1,604,374      | 1,905,957        | 2,067,163    | 2,321,134 | 2,449,785         | 2,560,126                    |          |                        |
| 68                 | 419,108        | 668,293          | 765,958      | 1,100,487 | 1,223,621         | 1,409,156                    |          |                        |
| 104                | 88,175         | 155,884          | 191,065      | 327,445   | 394,311           | 500,186                      |          |                        |
| Asphalt Binder: S  | J4,000         | 91,907           | 113,782      | 198,940   | Asnhalt Ge        | neral: Volumet               | ric Prop | erties as Built        |
| Asphare Dilucer. 5 | Angular Fra    | a = 10  rod/co   | 2            | 1         | Effortivo Di      | ndor Contont (0              |          |                        |
| Temperature (°F)   | C* (Da)        | .q. – 10 Idu/se  |              |           | Ain Voida (       |                              | 0)       | 5.0                    |
|                    | G* (Pa)        | Delta (degre     | e)           |           | Air Voids (S      | /0)                          |          | 5.0                    |
| 147.2              |                |                  |              | -         | Total Unit V      | Weight (pcf)                 |          | 145                    |
| 158                |                |                  |              |           |                   |                              |          |                        |
| 168.8              |                |                  |              |           |                   |                              |          |                        |
|                    |                |                  |              | Level 2   |                   |                              |          |                        |
| Asphalt Mix: Agg   | regate Gradati | on               |              |           |                   |                              |          |                        |
|                    | Cumulative     | % Retained       | Percent Pass | sing      |                   |                              |          |                        |
| 3/4 Inch Sieve     |                | 1                | 9            | 9         |                   |                              |          |                        |
| 3/8 Inch Sieve     |                | 9                | 9            | )1        |                   |                              |          |                        |
| #4 Sieve           | 1              | 9                | 8            | 31        |                   |                              |          |                        |
| #200 Sieve         | 94             | 4.7              | 5            | .3        |                   |                              |          |                        |
| Asphalt Binder: S  | uperpave Bind  | ler Test Data    |              |           | Asphalt Ge        | neral: Volumet               | ric Prop | erties as Built        |
| *                  | Angular Fre    | eq. = 10  rad/se | c            | ]         | Effective Bi      | nder Content (%              | 6)       | 10.1                   |
| Temperature (°F)   | G* (Pa)        | Delta (degre     | e)           | -         | Air Voids (%) 5.0 |                              |          | 5.0                    |
| 147.2              | 49700          | 60.4             |              | -         | Total Unit V      | Weight (pcf)                 |          | 145                    |
| 158                | 31300          | 62.2             |              |           |                   |                              |          |                        |
| 168.8              | 16500          | 63.7             |              |           |                   |                              |          |                        |
|                    |                |                  |              | Level 3   |                   |                              |          |                        |
| Asphalt Mix: Agg   | regate Gradati | on               |              |           |                   | <b>Asphalt Gen</b><br>Built  | eral: Vo | lumetric Properties as |
|                    | Cumulative     | % Retained       | Percent Pass | sing      |                   | Effective Bin<br>Content (%) | der      | 11.6                   |
| 3/4 Inch Sieve     |                | 1                | 95           |           | ]                 | Air Voids (%                 | )        | 5.5                    |
| 3/8 Inch Sieve     |                | 9                | 84           |           | 1                 | Total Unit W<br>(pcf)        | eight    | 145                    |
| #4 Sieve           |                | 19               | 57           |           | ]                 |                              |          |                        |
| #200 Sieve         |                | 5.3              | 51.2         |           | ]                 |                              |          |                        |
|                    |                |                  |              |           | -                 |                              |          |                        |
| Asphalt Binder: S  | uperpave Bind  | der Grading:     |              | PG 64-22  |                   |                              |          |                        |

|                        |                |                             |              | Table A   | .7           |                                 |                            |
|------------------------|----------------|-----------------------------|--------------|-----------|--------------|---------------------------------|----------------------------|
| Mixture Type:          | A 25_64_N      |                             |              |           |              | XML File:                       |                            |
|                        |                |                             |              | Level 1   |              |                                 |                            |
| Asphalt Mix: Dyn       | amic Modulus   | Table                       |              |           |              |                                 |                            |
| Temperature (°F)       | Mixture  E*    | , psi                       |              |           |              |                                 |                            |
| remperature (1)        | 0.1 Hz         | 0.5 Hz                      | 1 Hz         | 5 Hz      | 10 Hz        | 25 Hz                           |                            |
| 39.2                   | 1,491,958      | 1,756,555                   | 1,875,438    | 2,161,550 | 2,283,430    | 2,438,814                       |                            |
| 68                     | 518,414        | 718,035                     | 814,243      | 1,085,754 | 1,212,228    | 1,390,576                       |                            |
| 104                    | 112,825        | 181,733                     | 218,814      | 359,743   | 438,885      | 573,577                         |                            |
| 130                    | 112,825        | 181,733                     | 218,814      | 359,743   | 438,885      | 573,577                         |                            |
| Asphalt Binder: S      | uperpave Bind  | der Test Data               |              |           | Asphalt Ge   | neral: Volumetric 1             | Properties as Built        |
| <b>T</b> (- <b>T</b> ) | Angular Fre    | eq. = $10 \text{ rad/se}$   | c            |           | Effective Bi | nder Content (%)                | 11.2                       |
| Temperature (°F)       | G* (Pa)        | Delta (degre                | e)           |           | Air Voids (% | %)                              | 5.5                        |
| 147.2                  | 37100          | 72.6                        | -            |           | Total Unit V | Weight (pcf)                    | 145                        |
| 158                    | 17500          | 75.6                        |              |           |              |                                 |                            |
| 168.8                  | 7890           | 78.4                        |              |           |              |                                 |                            |
| 100.0                  | 1070           | 70.1                        |              | Level 2   |              |                                 |                            |
| Asnhalt Mix. Aga       | regate Gradati | on                          |              | 201012    |              |                                 |                            |
| Asphant Mix. Agg       | Cumulativa     | % Poteinod                  | Doroont Doo  | ina       | 1            |                                 |                            |
| 2/41 1 6               | Cumulative     | 70 Ketaineu                 | Percent Pas  | sing      | -            |                                 |                            |
| 3/4 Inch Sieve         | 1              | 2                           | 8            | 38        |              |                                 |                            |
| 3/8 Inch Sieve         |                | 9                           | 9            | 01        | -            |                                 |                            |
| #4 Sieve               | 2              | 20                          | 8            | 80        |              |                                 |                            |
| #200 Sieve             | 94             | 4.3                         | 5            | .7        |              |                                 |                            |
| Asphalt Binder: S      | uperpave Bind  | ler Test Data               |              |           | Asphalt Ge   | neral: Volumetric 1             | Properties as Built        |
| *                      | Angular Fre    | $a_{i} = 10 \text{ rad/se}$ | c            | ]         | Effective Bi | nder Content (%)                | 11.2                       |
| Temperature (°F)       | G* (Pa)        | Delta (degre                | e)           |           | Air Voids (9 | %)<br>()                        | 5.5                        |
| 147.2                  | 27100          | 72.6                        | ()           |           | Total Unit V | Veight (ncf)                    | 145                        |
| 147.2                  | 3/100          | 72.0                        |              | -         |              | vergin (per)                    | 145                        |
| 158                    | 1/500          | /5.6                        |              |           |              |                                 |                            |
| 168.8                  | 7890           | 78.4                        |              | T 12      |              |                                 |                            |
|                        |                |                             |              | Level 3   |              |                                 |                            |
| Asphalt Mix: Agg       | regate Gradati | on                          |              |           |              | <b>Asphalt General</b><br>Built | : Volumetric Properties as |
|                        | Cumulative     | % Retained                  | Percent Pass | sing      | ]            | Effective Binder<br>Content (%) | 11.2                       |
| 3/4 Inch Sieve         |                | 12                          | 88           |           |              | Air Voids (%)                   | 5.5                        |
| 3/8 Inch Sieve         |                | 9                           | 79           |           | 1            | Total Unit Weigh<br>(pcf)       | <sup>it</sup> 145          |
| #4 Sieve               |                | 20                          | 59           |           |              |                                 |                            |
| #200 Sieve             |                | 5.7                         | 53.3         |           |              |                                 |                            |
|                        |                |                             |              |           | -            |                                 |                            |
| Asphalt Binder: S      | uperpave Bind  | der Grading:                |              | PG 64-22  |              |                                 |                            |

|                       |                |                |              | Table A   | .8           |                                 |                              |
|-----------------------|----------------|----------------|--------------|-----------|--------------|---------------------------------|------------------------------|
| Mixture Type:         | A 25_64_N      | 2              |              |           |              | XML File:                       | L*_PG64_25_A_R1              |
|                       |                |                |              | Level 1   |              |                                 |                              |
| Asphalt Mix: Dyna     | amic Modulus   | Table          |              |           |              |                                 |                              |
| T                     | Mixture  E*    | , psi          |              |           |              |                                 |                              |
| Temperature (°F)      | 0.1 Hz         | 0.5 Hz         | 1 Hz         | 5 Hz      | 10 Hz        | 25 Hz                           |                              |
| 39.2                  | 1,556,596      | 1,890,369      | 2,066,300    | 2,351,759 | 2,486,870    | 2,625,608                       |                              |
| 68                    | 381,566        | 628,307        | 729,361      | 1,081,872 | 1,216,166    | 1,414,382                       |                              |
| 104                   | 68,568         | 108,719        | 140,700      | 229,344   | 297,634      | 381,114                         |                              |
| 130                   | 34,913         | 50,039         | 62,015       | 97,443    | 125,624      | 167,944                         |                              |
| Asphalt Binder: S     | uperpave Bind  | ler Test Data  |              |           | Asphalt Ge   | neral: Volumetric               | c Properties as Built        |
| <b>T</b> ( <b>D</b> ) | Angular Fre    | q = 10  rad/se | c            | ]         | Effective Bi | nder Content (%)                | 9.8                          |
| Temperature (°F)      | G* (Pa)        | Delta (degre   | e)           | 1         | Air Voids (% | %)                              | 5.2                          |
|                       |                |                | ,            |           | Total Unit V | Weight (pcf)                    | 145                          |
|                       |                |                |              |           |              |                                 |                              |
|                       |                |                |              | 1         |              |                                 |                              |
|                       | <u> </u>       | <u>I</u>       |              | Level 2   |              |                                 |                              |
| Asphalt Mix: Age      | regate Gradati | on             |              |           |              |                                 |                              |
| rispitute terra riggi | Cumulative     | % Petained     | Dercent Doc  | sing      | 1            |                                 |                              |
| 2/4 In al. Ciana      | Cullulative    |                | reicent rass | sing      | 4            |                                 |                              |
| 3/4 Inch Sieve        | ,              | 7              | 9            | 13        | -            |                                 |                              |
| 3/8 Inch Sieve        | 9              | 9              | 9            | 1         | -            |                                 |                              |
| #4 Sieve              | 1              | .5             | 8            | 5         | 4            |                                 |                              |
| #200 Sieve            | 94             | 4.5            | 5            | .5        | ]            |                                 |                              |
|                       |                |                |              |           |              |                                 |                              |
| Asphalt Binder: S     | uperpave Bind  | ler Test Data  |              | ٦         | Asphalt Ge   | neral: Volumetric               | c Properties as Built        |
| Tomperature (0F)      | Angular Fre    | q = 10  rad/se | с            |           | Effective Bi | nder Content (%)                | 9.8                          |
| Temperature (T)       | G* (Pa)        | Delta (degre   | e)           |           | Air Voids (% | %)                              | 5.2                          |
| 147.2                 | 37100          | 72.6           |              | 1         | Total Unit W | Weight (pcf)                    | 145                          |
| 158                   | 17500          | 75.6           |              | 1         |              |                                 | 1                            |
| 168.8                 | 7890           | 78.4           |              |           |              |                                 |                              |
| 100.0                 | 1070           | /0.4           |              | Level 3   |              |                                 |                              |
| Asphalt Mix: Agg      | regate Gradati | on             |              |           |              | Asphalt Gener                   | al: Volumetric Properties as |
|                       | 1              |                | 1            |           | -            | Duin                            |                              |
|                       | Cumulative     | % Retained     | Percent Pass | sing      |              | Effective Binder<br>Content (%) | 9.8                          |
| 3/4 Inch Sieve        |                | 9              | 9            | 1         |              | Air Voids (%)                   | 5.2                          |
| 3/8 Inch Sieve        | ,              | 7              | 8            | 34        |              | Total Unit Weig<br>(pcf)        | ght 145                      |
| #4 Sieve              | 1              | 5              | 6            | i9        | ]            |                                 |                              |
| #200 Sieve            | 5              | .5             | 63           | 3.5       |              |                                 |                              |
| Asphalt Binder: S     | uperpaye Bind  | ler Grading:   |              | PG 64-22  | 1            |                                 |                              |

|                                                                                                |                       |                            |             | Table     | A.9          |                               |                                     |  |  |  |  |
|------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-------------|-----------|--------------|-------------------------------|-------------------------------------|--|--|--|--|
| Mixture Type:                                                                                  | B 9.5_64              | M1                         |             |           |              | XML File:                     | L*_PG64_9.5_B_R3-A                  |  |  |  |  |
|                                                                                                |                       |                            |             | Level     | 1            |                               |                                     |  |  |  |  |
| Asphalt Mix: Dyna                                                                              | amic Modul            | us Table                   |             |           |              |                               |                                     |  |  |  |  |
| Temperature (°F)                                                                               | Mixture  I            | E*∣, psi                   |             |           |              |                               |                                     |  |  |  |  |
|                                                                                                | 0.1 Hz                | 0.5 Hz                     | 1 Hz        | 5 Hz      | 10 Hz        | 25 Hz                         |                                     |  |  |  |  |
| 39.2                                                                                           | 707,903               | 1,004,842                  | 1,143,469   | 1,491,896 | 1,631,093    | 1,857,805                     |                                     |  |  |  |  |
| 68                                                                                             | 135,249               | 244,567                    | 293,579     | 492,606   | 573,874      | 723,054                       |                                     |  |  |  |  |
| 104                                                                                            | 20,470                | 24 650                     | 30 313      | 54 053    | 67 772       | 98 849                        |                                     |  |  |  |  |
|                                                                                                |                       |                            |             |           |              |                               |                                     |  |  |  |  |
| Asphalt Binder: Superpave Binder Test Data     Asphalt General: Volumetric Properties as Built |                       |                            |             |           |              |                               |                                     |  |  |  |  |
| Temperature (%F)                                                                               | Angular F             | req. = 10 rad/             | sec         |           | Effective B  | inder Content (%              | ) 12.6                              |  |  |  |  |
| Temperature (T)                                                                                | G* (Pa)               | Delta (degre               | ee)         |           | Air Voids (  | %)                            | 6.5                                 |  |  |  |  |
| 147.2                                                                                          | 24300                 |                            | 73.6        | -         | Total Unit V | Weight (pcf)                  | 145                                 |  |  |  |  |
| 158                                                                                            | 1170                  |                            | 76.6        |           |              |                               |                                     |  |  |  |  |
| 168.8                                                                                          | 6800                  |                            | 79.2        |           |              |                               |                                     |  |  |  |  |
| Level 2                                                                                        |                       |                            |             |           |              |                               |                                     |  |  |  |  |
| Asphalt Mix: Agg                                                                               | regate Grada          | ation                      |             |           | -            |                               |                                     |  |  |  |  |
|                                                                                                | Cumulativ<br>Retained | ve %                       | Percent Pas | sing      | _            |                               |                                     |  |  |  |  |
| 3/4 Inch Sieve                                                                                 |                       | 0                          | 1           | 00        |              |                               |                                     |  |  |  |  |
| 3/8 Inch Sieve                                                                                 |                       | 1                          | 9           | 99        |              |                               |                                     |  |  |  |  |
| #4 Sieve                                                                                       |                       | 28                         | 7           | 72        |              |                               |                                     |  |  |  |  |
| #200 Sieve                                                                                     |                       | 94                         |             | 6         |              |                               |                                     |  |  |  |  |
| Asphalt Dindom S                                                                               | un ann arra Di        | n dan Taat Dat             |             |           | Agnhalt Ca   | nonali Valumat                | o Duomontios os Duilt               |  |  |  |  |
| Asphan Bilder: 5                                                                               | Angular E             | $r_{rog} = 10 \text{ rod}$ | a<br>Isoo   | 1         | Effective D  | inder Content (%              |                                     |  |  |  |  |
| Temperature (°F)                                                                               | Aliguiai I            | Delte (deem                | 20)         | -         | Ain Voida (  |                               | ) 12.0                              |  |  |  |  |
| 147.0                                                                                          | 0 <sup>-</sup> (Fa)   |                            |             |           | All Volus (  | Voj                           | 145                                 |  |  |  |  |
| 147.2                                                                                          | 24300                 | 73.6                       |             | -         | Total Unit   | weight (pci)                  | 143                                 |  |  |  |  |
| 158                                                                                            | 1170                  | 76.6                       |             | -         |              |                               |                                     |  |  |  |  |
| 168.8                                                                                          | 6800                  | 79.2                       |             | Laval     | 2            |                               |                                     |  |  |  |  |
|                                                                                                |                       |                            |             | Level     | 3            |                               |                                     |  |  |  |  |
| Asphalt Mix: Agg                                                                               | regate Grada          | ation                      |             |           |              | Asphalt Gene                  | ral: Volumetric Properties as Built |  |  |  |  |
|                                                                                                | Cumulativ<br>Retained | ve %                       | Percent Pas | sing      |              | Effective Bind<br>Content (%) | er 12.6                             |  |  |  |  |
| 3/4 Inch Sieve                                                                                 |                       | 0                          | 1           | 00        |              | Air Voids (%)                 | 6.5                                 |  |  |  |  |
| 3/8 Inch Sieve                                                                                 |                       | 1                          | 9           | 99        |              | Total Unit Wei<br>(pcf)       | 145                                 |  |  |  |  |
| #4 Sieve                                                                                       |                       | 28                         |             | 71        | 4            |                               |                                     |  |  |  |  |
| #200 Sieve                                                                                     |                       | 6                          | 6           | 65        | ]            |                               |                                     |  |  |  |  |
|                                                                                                | ~                     |                            |             | DG (4.02  | 1            |                               |                                     |  |  |  |  |
| Asphalt Binder: S                                                                              | uperpave Bi           | nder Grading               | :           | PG 64-22  |              |                               |                                     |  |  |  |  |

|                                                |                       |                  |                  | Table A   | <b>\.10</b>  |                    |                                  |  |  |  |
|------------------------------------------------|-----------------------|------------------|------------------|-----------|--------------|--------------------|----------------------------------|--|--|--|
| Mixture Type:                                  | B 9.5_64              | M2               |                  |           |              | XML File:          | L*_PG64_9.5_B_R3-V               |  |  |  |
|                                                |                       |                  |                  | Level     | 1            |                    |                                  |  |  |  |
| Asphalt Mix: Dyn                               | amic Modul            | us Table         |                  |           |              |                    |                                  |  |  |  |
| Temperature (°F)                               | Mixture  I            | E*∣, psi         |                  |           | _            | -                  |                                  |  |  |  |
| remperator (1)                                 | 0.1 Hz                | 0.5 Hz           | 1 Hz             | 5 Hz      | 10 Hz        | 25 Hz              |                                  |  |  |  |
| 39.2                                           | 726,463               | 1,059,151        | 1,180,868        | 1,560,876 | 1,682,118    | 1,905,371          |                                  |  |  |  |
| 68                                             | 151,093               | 273,425          | 328,405          | 548,293   | 638,450      | 796,580            |                                  |  |  |  |
| 104                                            | 29,619                | 52,882<br>26.004 | 65,149<br>21,275 | 121,003   | 148,834      | 207,462            |                                  |  |  |  |
| 150 15,871 20,004 51,575 50,526 07,451 100,515 |                       |                  |                  |           |              |                    |                                  |  |  |  |
| Asphalt Binder: S                              | uperpave Bi           | nder Test Dat    | a                | _         | Asphalt Ge   | eneral: Volumetric | Properties as Built              |  |  |  |
| T ( (17)                                       | Angular F             | req. = 10 rad/   | sec              |           | Effective B  | inder Content (%)  | 11.6                             |  |  |  |
| Temperature (°F)                               | G* (Pa)               | Delta (degre     | ee)              |           | Air Voids (  | %)                 | 6.5                              |  |  |  |
| 147.2                                          | 5780                  | 80.8             |                  |           | Total Unit V | Weight (pcf)       | 145                              |  |  |  |
| 158                                            | 11500                 | 78.4             |                  |           |              |                    |                                  |  |  |  |
| 168.8                                          | 19600                 | 75.4             |                  |           |              |                    |                                  |  |  |  |
|                                                | •                     |                  |                  | Level     | 2            |                    |                                  |  |  |  |
| Asphalt Mix: Agg                               | regate Grada          | ation            |                  |           |              |                    |                                  |  |  |  |
|                                                | Cumulativ<br>Retained | ve %             | Percent Pas      | sing      |              |                    |                                  |  |  |  |
| 3/4 Inch Sieve                                 | 0 100                 |                  |                  |           |              |                    |                                  |  |  |  |
| 3/8 Inch Sieve                                 |                       | 6                | ç                | 94        |              |                    |                                  |  |  |  |
| #4 Sieve                                       |                       | 27               | 1                | 73        |              |                    |                                  |  |  |  |
| #200 Sieve                                     | 9                     | 3.5              | 6                | 5.5       |              |                    |                                  |  |  |  |
|                                                |                       |                  |                  |           | _            |                    |                                  |  |  |  |
| Asphalt Binder: S                              | uperpave Bi           | nder Test Dat    | a                | _         | Asphalt Ge   | eneral: Volumetric | Properties as Built              |  |  |  |
| T ( (4F)                                       | Angular F             | req. = 10 rad/   | sec              |           | Effective B  | inder Content (%)  | 11.6                             |  |  |  |
| Temperature (°F)                               | G* (Pa)               | Delta (degre     | ee)              |           | Air Voids (  | %)                 | 6.5                              |  |  |  |
| 147.2                                          | 5780                  | 80.8             |                  |           | Total Unit V | Weight (pcf)       | 145                              |  |  |  |
| 158                                            | 11500                 | 78.4             |                  |           |              |                    |                                  |  |  |  |
| 168.8                                          | 19600                 | 75.4             |                  |           |              |                    |                                  |  |  |  |
|                                                |                       | ,                |                  | Level     | 3            |                    |                                  |  |  |  |
| Asphalt Mix: Agg                               | regate Grada          | ation            |                  |           |              | Asphalt General    | : Volumetric Properties as Built |  |  |  |
|                                                | Cumulativ             | ve %             | Percent Pas      | sing      | ]            | Effective Binder   | 11.6                             |  |  |  |
| 3/4 Inch Sieve                                 | Retained              |                  | 1                | 00        | -            | Content (%)        | 65                               |  |  |  |
| S. Then blove                                  |                       | 0                |                  |           | -            | Total Unit Weich   | t                                |  |  |  |
| 3/8 Inch Sieve                                 |                       | 6                | 9                | 94        | -            | (pcf)              | 145                              |  |  |  |
| #4 Sieve                                       |                       | 27               | (                | 0.5       | -            |                    |                                  |  |  |  |
| #200 Sieve                                     |                       | 6.5              | 6                | 0.5       | l            |                    |                                  |  |  |  |
| Asphalt Binder: S                              | uperpave Bi           | nder Grading     | :                | PG 64-22  |              |                    |                                  |  |  |  |

|                                                            |                       |                           |                 | Table A                       | 4.11         |                                                            |                              |
|------------------------------------------------------------|-----------------------|---------------------------|-----------------|-------------------------------|--------------|------------------------------------------------------------|------------------------------|
| Mixture Type:                                              | B 9.5_67_             | S                         |                 |                               |              | XML File:                                                  | L*_PG67_9.5_B_R4             |
|                                                            |                       |                           |                 | Level                         | 1            |                                                            |                              |
| Asphalt Mix: Dyn                                           | amic Modul            | us Table                  |                 |                               |              |                                                            |                              |
| Temperature (°F)                                           | Mixture  I            | E*∣, psi                  |                 |                               |              |                                                            |                              |
| remperature (1)                                            | 0.1 Hz                | 0.5 Hz                    | 1 Hz            | 5 Hz                          | 10 Hz        | 25 Hz                                                      |                              |
| 39.2                                                       | 778,386               | 1,050,892                 | 1,189,409       | 1,493,084                     | 1,629,393    | 1,824,386                                                  |                              |
| 68                                                         | 154,455               | 275,617                   | 328,315         | 530,523                       | 612,484      | 750,601                                                    |                              |
| 104                                                        | 24,939                | 49,370                    | 62,359          | 119,532                       | 148,018      | 202,299                                                    |                              |
| 130                                                        | 11,980                | 23,189                    | 29,765          | 58,146                        | 73,784       | 109,831                                                    |                              |
| Asphalt Binder: S                                          | uperpave Bi           | nder Test Dat             | a               |                               | Asphalt Ge   | neral: Volumetric Pi                                       | operties as Built            |
|                                                            | Angular F             | Freq. = $10 \text{ rad}/$ | sec             |                               | Effective Bi | inder Content (%)                                          | 12.8                         |
| Temperature (°F)                                           | G* (Pa)               | Delta (degre              | e)              |                               | Air Voids (  | %)<br>//                                                   | 5.5                          |
| 147.2                                                      | 23600                 | 72.2                      | ()              |                               | Total Unit V | Weight (pcf)                                               | 145                          |
| 158                                                        | 10600                 | 75.6                      |                 |                               |              |                                                            |                              |
| 120 0                                                      | 4010                  | 79.6                      |                 |                               |              |                                                            |                              |
| 108.8                                                      | 4910                  | /0.0                      |                 | T av1                         | 2            |                                                            |                              |
| A 1 1/ B/C A                                               | + C 1                 |                           |                 | Level                         | Z            |                                                            |                              |
| Aspnait Mix: Agg                                           | regate Grada          |                           |                 |                               | 1            |                                                            |                              |
|                                                            | Retained              | ve %                      | Percent Pas     | sing                          | -            |                                                            |                              |
| 3/4 Inch Sieve                                             |                       | 0                         | 1               | 00                            |              |                                                            |                              |
| 3/8 Inch Sieve                                             |                       | 3                         | 9               | 97                            |              |                                                            |                              |
| #4 Sieve                                                   |                       | 28                        | 7               | 12                            |              |                                                            |                              |
| #200 Sieve                                                 | 9                     | 4.7                       | 5               | .3                            |              |                                                            |                              |
|                                                            |                       |                           |                 | -                             | <b>_</b>     |                                                            |                              |
| Asphalt Binder: S                                          | unernave Bi           | nder Test Dat             | a               |                               | Asnhalt Ge   | neral: Volumetric P                                        | operties as Built            |
| Asphart Diriter is                                         | Angular F             | $r_{reg} = 10 r_{red}$    | sec             | 1                             | Effective Bi | nder Content (%)                                           | 12.8                         |
| Temperature (°F)                                           | Aliguiai T            | 1eq. = 10  rau/           | sec             |                               |              |                                                            | 12.0                         |
|                                                            | G* (Pa)               | Della (degre              | e)              |                               | Air voids (  | <sup>70</sup> )                                            | 5.5                          |
| 147.2                                                      | 23600                 | 72.2                      |                 |                               | Total Unit V | Weight (pcf)                                               | 145                          |
| 158                                                        | 10600                 | 75.6                      |                 |                               |              |                                                            |                              |
| 168.8                                                      | 4910                  | 78.6                      |                 |                               |              |                                                            |                              |
|                                                            |                       |                           |                 | Level                         | 3            |                                                            |                              |
|                                                            |                       |                           |                 |                               |              |                                                            |                              |
| Asphalt Mix: Agg                                           | regate Grada          | ation                     |                 |                               |              | Asphalt General:                                           | Volumetric Properties as Bui |
|                                                            |                       |                           | Percent Passing |                               | 1            | Effective Binder                                           | 12.8                         |
|                                                            | Cumulativ<br>Retained | ve %                      | Percent Pas     | sing                          |              | Content (%)                                                | 12.0                         |
| 3/4 Inch Sieve                                             | Cumulativ<br>Retained | ve %                      | Percent Pass    | sing<br>00                    |              | Content (%)<br>Air Voids (%)                               | 5.5                          |
| 3/4 Inch Sieve<br>3/8 Inch Sieve                           | Cumulativ<br>Retained | 0<br>3                    | Percent Pass    | 00<br>07                      | -            | Content (%)<br>Air Voids (%)<br>Total Unit Weight<br>(pcf) | 5.5                          |
| 3/4 Inch Sieve<br>3/8 Inch Sieve<br>#4 Sieve               | Cumulativ<br>Retained | 0<br>3<br>28              | Percent Pass    | sing<br>00<br>07<br>59        | -            | Content (%)<br>Air Voids (%)<br>Total Unit Weight<br>(pcf) | 5.5                          |
| 3/4 Inch Sieve<br>3/8 Inch Sieve<br>#4 Sieve<br>#200 Sieve | Cumulativ<br>Retained | 0<br>3<br>28<br>5 3       | Percent Pass    | sing<br>00<br>07<br>59<br>3.7 | -            | Content (%)<br>Air Voids (%)<br>Total Unit Weight<br>(pcf) | 5.5                          |
| 3/4 Inch Sieve<br>3/8 Inch Sieve<br>#4 Sieve<br>#200 Sieve | Cumulativ<br>Retained | 0<br>3<br>28<br>5.3       | Percent Pass    | sing<br>00<br>07<br>59<br>3.7 |              | Content (%)<br>Air Voids (%)<br>Total Unit Weight<br>(pcf) | 5.5                          |

|                   |                       |                 |               | Table /   | <b>4.12</b>  |                          |                                    |  |  |  |
|-------------------|-----------------------|-----------------|---------------|-----------|--------------|--------------------------|------------------------------------|--|--|--|
| Mixture Type:     | B 12.5_64             | 4_M             |               |           |              | XML File:                | L*_PG64_12.5_B_R3                  |  |  |  |
|                   |                       |                 |               | Level     | 1            |                          |                                    |  |  |  |
| Asphalt Mix: Dyn  | amic Modul            | us Table        |               |           |              |                          |                                    |  |  |  |
| Temperature (°F)  | Mixture  I            | E* , psi        |               | 1         |              |                          |                                    |  |  |  |
| 1 ()              | 0.1 Hz                | 0.5 Hz          | 1 Hz          | 5 Hz      | 10 Hz        | 25 Hz                    |                                    |  |  |  |
| 39.2              | 713,383               | 1,077,654       | 1,200,054     | 1,606,245 | 1,729,371    | 1,937,672                |                                    |  |  |  |
| 68                | 139,056               | 263,348         | 321,364       | 555,823   | 654,698      | 822,028                  |                                    |  |  |  |
| 104               | 24,300                | 43,769          | 23 735        | 42 183    | 53 201       | 74 579                   |                                    |  |  |  |
| 150               | 12,510                | 17,17           | 25,155        | 42,105    | 55,201       | 77,377                   |                                    |  |  |  |
| Asphalt Binder: S | uperpave Bi           | inder Test Dat  | a             | -         | Asphalt Ge   | neral: Volumetric        | c Properties as Built              |  |  |  |
| Temperature (%F)  | Angular F             | Freq. = 10 rad/ | sec           |           | Effective Bi | nder Content (%)         | 12.5                               |  |  |  |
| Temperature (T)   | G* (Pa)               | Delta (degre    | ee)           |           | Air Voids (  | %)                       | 5.6                                |  |  |  |
| 147.2             | 14300                 | 76.7            |               |           | Total Unit V | Weight (pcf)             | 145                                |  |  |  |
| 158               | 9440                  | 79.6            |               |           |              |                          |                                    |  |  |  |
| 168.8             | 5170                  | 81.9            |               |           |              |                          |                                    |  |  |  |
|                   |                       |                 |               | Level     | 2            |                          |                                    |  |  |  |
| Asphalt Mix: Agg  | regate Grada          | ation           |               |           |              |                          |                                    |  |  |  |
|                   | Cumulativ<br>Retained | ve %            | Percent Pas   | sing      |              |                          |                                    |  |  |  |
| 3/4 Inch Sieve    | 0 100                 |                 |               |           |              |                          |                                    |  |  |  |
| 3/8 Inch Sieve    |                       | 13              | 8             | 37        |              |                          |                                    |  |  |  |
| #4 Sieve          |                       | 25              | 7             | 75        |              |                          |                                    |  |  |  |
| #200 Sieve        |                       | 94              |               | 6         |              |                          |                                    |  |  |  |
|                   |                       |                 |               |           | -            |                          |                                    |  |  |  |
| Asphalt Binder: S | uperpave Bi           | inder Test Dat  | a             |           | Asphalt Ge   | neral: Volumetric        | c Properties as Built              |  |  |  |
| -                 | Angular F             | Freq. = 10 rad/ | sec           | ]         | Effective Bi | nder Content (%)         | 12.5                               |  |  |  |
| Temperature (°F)  | G* (Pa)               | Delta (degre    | ee)           | -         | Air Voids (  | %)                       | 5.6                                |  |  |  |
| 147.2             | 14300                 | 76.7            | ,             |           | Total Unit V | Veight (pcf)             | 145                                |  |  |  |
| 158               | 9440                  | 79.6            |               |           |              | 6 4 /                    | I                                  |  |  |  |
| 168.8             | 5170                  | 81.9            |               | -         |              |                          |                                    |  |  |  |
| 100.0             | 5170                  | 01.9            |               | Level     | 3            |                          |                                    |  |  |  |
|                   |                       |                 |               | 2010      | 0            |                          |                                    |  |  |  |
| Asphalt Mix: Agg  | regate Grada          | ation           |               |           |              | Asphalt Gener            | al: Volumetric Properties as Built |  |  |  |
|                   | Cumulativ             | ve %            | Percent Pag   | sing      | ]            | Effective Binde          | r 12.5                             |  |  |  |
|                   | Retained              |                 | T creent T as |           | -            | Content (%)              |                                    |  |  |  |
| 3/4 Inch Sieve    |                       | 0               | 1             | 00        | _            | Air Voids (%)            | 5.6                                |  |  |  |
| 3/8 Inch Sieve    |                       | 13              | 9             | 97        |              | Total Unit Weig<br>(pcf) | <sup>ght</sup> 145                 |  |  |  |
| #4 Sieve          |                       | 25              | (             | 59        | 4            |                          |                                    |  |  |  |
| #200 Sieve        | #200 Sieve 6 63.7     |                 |               |           |              |                          |                                    |  |  |  |
|                   |                       |                 |               | 1         | 1            |                          |                                    |  |  |  |
| Asphalt Binder: S | uperpave Bi           | inder Grading   |               | PG 64-22  |              |                          |                                    |  |  |  |

|                   |                       |                 |              | Table /   | A.13         |                                 |                                  |
|-------------------|-----------------------|-----------------|--------------|-----------|--------------|---------------------------------|----------------------------------|
| Mixture Type:     | B 12.5_67             | 7_S             |              |           |              | XML File:                       | L*_PG67_12.5_B_R4                |
|                   |                       |                 |              | Level     | 1            |                                 |                                  |
| Asphalt Mix: Dyna | amic Modul            | us Table        |              |           |              |                                 |                                  |
| Temperature (°F)  | Mixture  I            | E* , psi        |              |           |              |                                 |                                  |
| remperature (1)   | 0.1 Hz                | 0.5 Hz          | 1 Hz         | 5 Hz      | 10 Hz        | 25 Hz                           |                                  |
| 39.2              | 799,436               | 1,098,798       | 1,226,957    | 1,560,258 | 1,685,026    | 1,894,083                       |                                  |
| 68                | 178,701               | 307,743         | 364,226      | 578,586   | 666,209      | 811,324                         |                                  |
| 104               | 40,797                | 72,786          | 89,099       | 159,438   | 192,590      | 267,258                         |                                  |
| 130               | 26,760                | 43,528          | 57,073       | 95,217    | 125,372      | 167,782                         |                                  |
| Asphalt Binder: S | uperpave Bi           | inder Test Dat  | a            | _         | Asphalt Ge   | neral: Volumetric I             | Properties as Built              |
| E (-E)            | Angular F             | req. = 10 rad/  | sec          |           | Effective Bi | nder Content (%)                | 12.1                             |
| Temperature (°F)  | G* (Pa)               | Delta (degre    | ee)          |           | Air Voids (  | %)                              | 6.0                              |
| 147.2             | 26800                 | 73.8            |              |           | Total Unit V | Weight (pcf)                    | 145                              |
| 158               | 10800                 | 77.3            |              |           |              |                                 |                                  |
| 168.8             | 5270                  | 80.3            |              |           |              |                                 |                                  |
|                   |                       |                 |              | Level     | 2            |                                 |                                  |
| Asphalt Mix: Agg  | regate Grada          | ation           |              |           |              |                                 |                                  |
|                   | Cumulativ             | ve %            | Percent Pas  | sing      |              |                                 |                                  |
| 3/4 Inch Sieve    | Ttetunieu             | 0               | 1            | 00        |              |                                 |                                  |
| 3/8 Inch Sieve    |                       | 14              | 8            | 86        |              |                                 |                                  |
| #4 Sieve          |                       | 25              | 7            | 15        | -            |                                 |                                  |
| #200 Sieve        |                       | 05              | /            | 5         |              |                                 |                                  |
| 1200 51010        |                       | <i>3</i> 5      |              | 5         | J            |                                 |                                  |
| Asphalt Binder: S | uperpave Bi           | inder Test Dat  | a            |           | Asphalt Ge   | neral: Volumetric I             | Properties as Built              |
| Tommerontume (0E) | Angular F             | Freq. = 10 rad/ | sec          |           | Effective Bi | nder Content (%)                | 12.1                             |
| Temperature (°F)  | G* (Pa)               | Delta (degre    | ee)          |           | Air Voids (  | %)                              | 6.0                              |
| 147.2             | 26800                 |                 | 73.8         |           | Total Unit V | Weight (pcf)                    | 145                              |
| 158               | 10800                 |                 | 77.3         |           |              |                                 |                                  |
| 168.8             | 5270                  |                 | 80.3         |           |              |                                 |                                  |
| 100.0             | 5270                  | I               | 00.5         | Level     | 3            |                                 |                                  |
|                   |                       |                 |              | Level     | 5            |                                 |                                  |
| Asphalt Mix: Agg  | regate Grada          | ation           |              |           |              | Asphalt General                 | : Volumetric Properties as Built |
|                   | Cumulativ<br>Retained | we %            | Percent Pass | sing      |              | Effective Binder<br>Content (%) | 12.1                             |
| 3/4 Inch Sieve    |                       | 0               | 0            |           | ]            | Air Voids (%)                   | 6.0                              |
| 3/8 Inch Sieve    |                       | 14              | 14           |           | _            | Total Unit Weigh<br>(pcf)       | t 145                            |
| #4 Sieve          |                       | 25              | 25           |           | 4            |                                 |                                  |
| #200 Sieve        |                       | 5               | 5            |           |              |                                 |                                  |
| Asphalt Binder: S | uperpave Bi           | nder Grading    | :            | PG 67-22  | ]            |                                 |                                  |

|                        |                |                           |               | able A.1  | 4            |                                 |                             |
|------------------------|----------------|---------------------------|---------------|-----------|--------------|---------------------------------|-----------------------------|
| Mixture Type:          | B 19_64_M      | [                         |               |           |              | XML<br>File:                    | L*_PG64_19_B_R3             |
|                        |                |                           |               | Level 1   |              |                                 |                             |
| Asphalt Mix: Dyna      | amic Modulus   | s Table                   |               |           |              |                                 |                             |
| Temperature (°F)       | Mixture  E*    | , psi                     |               |           |              |                                 |                             |
| remperature (1)        | 0.1 Hz         | 0.5 Hz                    | 25 Hz         |           |              |                                 |                             |
| 39.2                   | 1,328,492      | 1,666,382                 | 1,844,406     | 2,154,559 | 2,300,147    | 2,463,630                       |                             |
| 68                     | 280,235        | 496,408                   | 584,651       | 912,001   | 1,034,218    | 1,232,022                       |                             |
| 104                    | 21,279         | 41,131                    | 54,178        | 106,296   | 137,938      | 206,862                         |                             |
| 130                    | 5,605          | 8,689                     | 11,188        | 19,543    | 26,533       | 38,301                          |                             |
| Asphalt Binder: S      | uperpave Bin   | der Test Data             |               | _         | Asphalt Ge   | neral: Volumetric               | Properties as Built         |
| <b>T</b> (- <b>F</b> ) | Angular Fre    | eq. = 10 rad/se           | с             |           | Effective Bi | nder Content (%)                | 10.5                        |
| Temperature (°F)       | G* (Pa)        | Delta (degre              | ee)           |           | Air Voids (  | %)                              | 5.5                         |
| 147.2                  |                |                           |               |           | Total Unit V | Weight (pcf)                    | 145                         |
| 158                    |                |                           |               |           |              |                                 | ·                           |
| 168.8                  |                |                           |               |           |              |                                 |                             |
|                        |                |                           |               | Level 2   |              |                                 |                             |
| Asphalt Mix: Agg       | regate Gradati | ion                       |               |           |              |                                 |                             |
| 1 00                   | Cumulative     | % Retained                | Percent Passi | ng        |              |                                 |                             |
| 3/4 Inch Sieve         |                | 1                         | 9             | 9         |              |                                 |                             |
| 3/8 Inch Sieve         | ]              | 14                        | 8             | 6         |              |                                 |                             |
| #4 Sieve               | 2              | 25                        | 7             | 5         |              |                                 |                             |
| #200 Sieve             | ç              | 94                        | 6             | 6         |              |                                 |                             |
| Asphalt Binder: S      | uperpave Bin   | der Test Data             |               | -         | Asphalt Ge   | neral: Volumetric               | Properties as Built         |
| Tomporatura (0E)       | Angular Fre    | eq. = $10 \text{ rad/se}$ | c             |           | Effective Bi | nder Content (%)                | 10.5                        |
| Temperature (T)        | G* (Pa)        | Delta (degre              | ee)           |           | Air Voids (  | %)                              | 5.5                         |
|                        |                |                           |               |           | Total Unit V | Veight (pcf)                    | 145                         |
|                        |                |                           |               |           |              |                                 |                             |
|                        |                |                           |               | Level 3   |              |                                 |                             |
| Asphalt Mix: Agg       | regate Gradati | ion                       |               |           |              | <b>Asphalt Genera</b><br>Built  | I: Volumetric Properties as |
|                        | Cumulative     | % Retained                | Percent Passi | ng        |              | Effective Binder<br>Content (%) | 10.5                        |
| 3/4 Inch Sieve         |                | 1                         | 0             |           | ]            | Air Voids (%)                   | 5.5                         |
| 3/8 Inch Sieve         |                | 14                        | 14            |           |              | Total Unit Weigl<br>(pcf)       | <sup>nt</sup> 145           |
| #4 Sieve               | 1              | 25                        | 25            |           | 1            | \f <sup></sup> /                |                             |
| #200 Sieve             |                | 6                         | 5             |           | 1            |                                 |                             |
|                        | ·              |                           | •             | ſ         | 1            |                                 |                             |
| Asphalt Binder: S      | uperpave Bin   | der Grading:              |               | PG 64-22  |              |                                 |                             |

## Table A 14

|                   |                |                             |              | Table A.  | 15            |                                    |                         |
|-------------------|----------------|-----------------------------|--------------|-----------|---------------|------------------------------------|-------------------------|
| Mixture Type:     | B 25_64_M      |                             |              |           |               | XML File:                          | L*_PG64_25_B_R3         |
|                   |                |                             |              | Level 1   |               |                                    |                         |
| Asphalt Mix: Dyn  | amic Modulus   | Table                       |              |           |               |                                    |                         |
| Temperature (°F)  | Mixture  E*    | , psi                       |              |           |               |                                    |                         |
| remperature (1)   | 0.1 Hz         | 0.5 Hz                      | 1 Hz         | 5 Hz      | 10 Hz         | 25 Hz                              |                         |
| 39.2              | 1,155,865      | 1,551,697                   | 1,677,457    | 2,059,318 | 2,169,615     | 2,361,791                          |                         |
| 68                | 312,972        | 521,710                     | 611,119      | 924,418   | 1,050,408     | 1,234,732                          |                         |
| 104               | 65,957         | 113,107                     | 139,266      | 241,927   | 295,964       | 383,009                            |                         |
| 130               | 33,987         | 53,689                      | 65,279       | 111,491   | 137,751       | 182,596                            |                         |
| Asphalt Binder: S | uperpave Bind  | ler Test Data               |              |           | Asphalt Gen   | eral: Volumetric Prop              | erties as Built         |
| T (0E)            | Angular Fre    | $q_{1} = 10 \text{ rad/se}$ | с            | ]         | Effective Bin | der Content (%)                    | 9.4                     |
| Temperature (°F)  | G* (Pa)        | Delta (degre                | e)           |           | Air Voids (%  | )                                  | 5.9                     |
| 147.2             | 33500          | 72.6                        |              |           | Total Unit W  | eight (pcf)                        | 145                     |
| 158               | 17200          | 75.4                        |              |           |               |                                    |                         |
| 168.8             | 17700          | 76.1                        |              |           |               |                                    |                         |
|                   |                |                             |              | Level 2   |               |                                    |                         |
| Asphalt Mix: Agg  | regate Gradati | on                          |              |           |               |                                    |                         |
|                   | Cumulative     | % Retained                  | Percent Pass | sing      | ]             |                                    |                         |
| 3/4 Inch Sieve    |                | 8                           | ç            | )2        |               |                                    |                         |
| 3/8 Inch Sieve    | 1              | 0                           | ç            | 90        | -             |                                    |                         |
| #4 Sieve          | 1              | 7                           | 8            | 33        |               |                                    |                         |
| #200 Sieve        | 9              | 95                          |              | 5         |               |                                    |                         |
| A                 | D              | las Tast Data               |              |           | A h l4 C      | I. Walter at the Dura              | ertier er Derilt        |
| Asphalt Binder: 5 | uperpave Bind  |                             |              | 1         |               | leral: Volumetric Prop             |                         |
| Temperature (°F)  | Angular Fre    | $q_{i} = 10 \text{ rad/se}$ | c            |           | A: W: 1 (0)   | der Content (%)                    | 9.4                     |
|                   | G* (Pa)        | Delta (degre                | e)           | _         | Air Voids (%  | )<br>. 1. ( _ D                    | 5.9                     |
| 147.2             | 33500          | 72.6                        |              | -         | Total Unit W  | eight (pcI)                        | 145                     |
| 158               | 17200          | 75.4                        |              |           |               |                                    |                         |
| 168.8             | 17700          | 76.1                        |              | T 12      |               |                                    |                         |
|                   |                |                             |              | Level 3   |               |                                    |                         |
| Asphalt Mix: Agg  | regate Gradati | on                          |              |           |               | <b>Asphalt General:</b> V<br>Built | olumetric Properties as |
|                   | Cumulative     | % Retained                  | Percent Pass | sing      | ]             | Effective Binder<br>Content (%)    | 9.4                     |
| 3/4 Inch Sieve    |                | 10                          | 90           |           | 1             | Air Voids (%)                      | 5.9                     |
| 3/8 Inch Sieve    |                | 8                           | 82           |           |               | Total Unit Weight                  | 145                     |
| #4 Sieve          |                | 17                          | 65           |           | 1             |                                    | l                       |
| #200 Sieve        |                | 5                           | 60           |           |               |                                    |                         |
|                   |                |                             |              |           |               |                                    |                         |
|                   |                |                             |              | -         | -             |                                    |                         |

|                   |                |                           |             | Table A.  | 16          |                                 |                            |
|-------------------|----------------|---------------------------|-------------|-----------|-------------|---------------------------------|----------------------------|
| Mixture Type:     | C 9.5_67_N     | И                         |             |           |             | XML<br>File:                    | L*_PG67_9.5_C_R3           |
|                   |                |                           |             | Level 1   |             |                                 |                            |
| Asphalt Mix: Dyn  | amic Modulus   | s Table                   |             |           |             |                                 |                            |
| Temperature (°F)  | Mixture  E*    | , psi                     |             |           |             |                                 |                            |
| remperature (1)   | 0.1 Hz         | 0.5 Hz                    | 1 Hz        | 5 Hz      | 10 Hz       | 25 Hz                           |                            |
| 39.2              | 1,042,729      | 1,338,882                 | 1,493,116   | 1,797,075 | 1,938,251   | 2,119,050                       |                            |
| 68                | 252,870        | 416,779                   | 484,584     | 735,545   | 832,459     | 993,556                         |                            |
| 104               | 47,958         | 78,495                    | 100,325     | 164,872   | 209,851     | 264,927                         |                            |
| 130               | 22,643         | 34,356                    | 43,766      | 70,134    | 91,120      | 118,701                         |                            |
| Asphalt Binder: S | uperpave Bind  | der Test Data             |             |           | Asphalt Ge  | eneral: Volumetric I            | Properties as Built        |
| -                 | Angular Fre    | eq. = $10 \text{ rad/se}$ | c           | ]         | Effective B | inder Content (%)               | 12.9                       |
| Temperature (°F)  | G* (Pa)        | Delta (degre              | ee)         |           | Air Voids ( | %)                              | 5.0                        |
| 147.2             | 15900          | 77.7                      |             |           | Total Unit  | Weight (pcf)                    | 145                        |
| 158               | 7850           | 80.2                      |             |           |             |                                 |                            |
| 168.8             | 3240           | 82.7                      |             |           |             |                                 |                            |
|                   |                | -                         |             | Level 2   |             |                                 |                            |
| Asphalt Mix: Agg  | regate Gradati | ion                       |             |           |             |                                 |                            |
| 1 00              | Cumulative     | % Retained                | Percent Pas | sing      | ]           |                                 |                            |
| 3/4 Inch Sieve    |                | 0                         | 1           | 00        |             |                                 |                            |
| 3/8 Inch Sieve    |                | 5                         | 9           | 95        | -           |                                 |                            |
| #4 Sieve          | 3              | 32                        | (           | 58        |             |                                 |                            |
| #200 Sieve        | 94             | 4.5                       | 5           | 5.5       |             |                                 |                            |
| Asnhalt Rinder: S | uperpaye Bin   | der Test Data             |             |           | Asphalt Ga  | neral. Volumetric 1             | Properties as Built        |
| Asphart Diluci. 5 | Angular Fro    | a = 10  rad/co            | 2           | 7         | Effortivo D | inder Content (%)               |                            |
| Temperature (°F)  | Aliguiai Fie   | $P_{\rm L} = 10$ rad/se   | <u> </u>    | 4         |             |                                 | 12.9                       |
|                   | G* (Pa)        | Delta (degre              | e)          | -         | Air Voids ( | %)                              | 5.0                        |
| 147.2             | 15900          | 77.7                      |             | _         | Total Unit  | Weight (pcf)                    | 145                        |
| 158               | 7850           | 80.2                      |             | _         |             |                                 |                            |
| 168.8             | 3240           | 82.7                      |             |           |             |                                 |                            |
|                   |                |                           |             | Level 3   |             |                                 |                            |
| Asphalt Mix: Agg  | regate Gradati | ion                       |             |           |             | <b>Asphalt General</b><br>Built | : Volumetric Properties as |
|                   | Cumulative     | % Retained                | Percent Pas | sing      |             | Effective Binder<br>Content (%) | 12.9                       |
| 3/4 Inch Sieve    |                | 0                         | 100         |           | 4           | Air Voids (%)                   | 5.0                        |
| 3/8 Inch Sieve    |                | 5                         | 95          |           |             | Total Unit Weigh<br>(pcf)       | <sup>t</sup> 145           |
| #4 Sieve          |                | 32                        | 63          |           | 4           |                                 |                            |
| #200 Sieve        |                | 5.5                       | 57.5        |           | ]           |                                 |                            |
| Asnhalt Bindors S | unernave Rin   | der Gradina               |             | PG 67 22  | 1           |                                 |                            |
| Asphan Diluer: 5  | uperpave Blild | uer Graunig:              |             | 1007-22   | 1           |                                 |                            |

|                       |                       |                 |             | Table /   | 4.17         |                               |                                      |
|-----------------------|-----------------------|-----------------|-------------|-----------|--------------|-------------------------------|--------------------------------------|
| Mixture Type:         | C 12.5_67             | 7_M             |             |           |              | XML File:                     |                                      |
|                       |                       |                 |             | Level     | 1            |                               |                                      |
| Asphalt Mix: Dyna     | amic Modul            | us Table        |             |           |              |                               |                                      |
| Temperature (°F)      | Mixture               | E*∣, psi        |             |           |              |                               |                                      |
| remperature (1)       | 0.1 Hz                | 0.5 Hz          | 1 Hz        | 5 Hz      | 10 Hz        | 25 Hz                         |                                      |
| 39.2                  | 869,851               | 1,189,925       | 1,322,964   | 1,667,244 | 1,791,974    | 2,000,302                     |                                      |
| 68                    | 192,115               | 337,801         | 400,017     | 639,995   | 734,224      | 895,946                       |                                      |
| 104                   | 34,875                | 64,822          | 80,557      | 149,572   | 183,594      | 249,302                       |                                      |
| 130                   | 17,203                | 30,483          | 37,530      | 70,132    | 86,785       | 125,192                       |                                      |
| Asphalt Binder: S     | uperpave Bi           | inder Test Dat  | a           |           | Asphalt Ge   | neral: Volumetr               | ric Properties as Built              |
| <b>T</b> ( <b>D</b> ) | Angular F             | Freq. = 10 rad/ | sec         |           | Effective Bi | nder Content (%               | b) 11.5                              |
| Temperature (°F)      | G* (Pa)               | Delta (degre    | ee)         |           | Air Voids (  | %)                            | 5.8                                  |
| 147.2                 |                       |                 |             |           | Total Unit V | Veight (pcf)                  | 145                                  |
| 158                   |                       |                 |             |           |              |                               |                                      |
| 168.8                 |                       |                 |             |           |              |                               |                                      |
|                       |                       |                 |             | Level     | 2            |                               |                                      |
| Asphalt Mix: Agg      | regate Grada          | ation           |             |           |              |                               |                                      |
| 1 00                  | Cumulativ             | ve %            | Percent Pas | sing      |              |                               |                                      |
| 3/4 Inch Sieve        |                       | 0               | 1           | 00        |              |                               |                                      |
| 3/8 Inch Sieve        |                       | 12              | 5           | 88        |              |                               |                                      |
| #4 Sieve              |                       | 27              |             | 73        | -            |                               |                                      |
| #2.00 Sieve           | c                     | 27              | 6           | 5         | -            |                               |                                      |
| 1200 Biere            | ,                     | 5.7             | 0           |           | 1            |                               |                                      |
| Asphalt Binder: S     | uperpave Bi           | inder Test Dat  | a           | -         | Asphalt Ge   | neral: Volumetr               | ic Properties as Built               |
| T (aF)                | Angular F             | Freq. = 10 rad/ | sec         |           | Effective Bi | nder Content (%               | b) 11.5                              |
| Temperature (°F)      | G* (Pa)               | Delta (degre    | ee)         |           | Air Voids (  | %)                            | 5.8                                  |
| 147.2                 |                       |                 |             |           | Total Unit V | Veight (pcf)                  | 145                                  |
| 158                   |                       |                 |             |           |              |                               | ł                                    |
| 168.8                 |                       |                 |             |           |              |                               |                                      |
| 10010                 |                       |                 |             | Level     | 3            |                               |                                      |
| Asphalt Mix: Agg      | regate Grada          | ation           |             |           | -            | Asphalt Gene                  | eral: Volumetric Properties as Built |
|                       | Cumulativ<br>Retained | ve %            | Percent Pas | sing      |              | Effective Bind<br>Content (%) | ler 11.5                             |
| 3/4 Inch Sieve        |                       | 0               | 100         |           | ]            | Air Voids (%)                 | 5.8                                  |
| 3/8 Inch Sieve        |                       | 12              | 88          |           |              | Total Unit We<br>(pcf)        | ight 145                             |
| #4 Sieve              |                       | 27              | 61          |           | 4            |                               |                                      |
| #200 Sieve            |                       | 6.1             | 54.9        |           |              |                               |                                      |
| Asphalt Binder: S     | uperpave Bi           | inder Grading   | :           | PG 67-22  |              |                               |                                      |

| Table A.18                                                                                 |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|------------|-----------|---------------|-------------------------------|--------------------------------|--|--|--|--|
| Mixture Type:                                                                              | C 12.5_76                        | 6_M                                     |            |           |               | XML File:                     | L*_PG76_12.5_C_R3              |  |  |  |  |
| Level 1                                                                                    |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
| Asphalt Mix: Dynamic Modulus Table                                                         |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
| Temperature (°F) Mixture  E* , psi                                                         |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
| remperature (1)                                                                            | 0.1 Hz 0.5 Hz                    |                                         | 1 Hz 5 Hz  |           | 10 Hz         | 25 Hz                         |                                |  |  |  |  |
| 39.2                                                                                       | 565,772 851,214 953,092          |                                         | 1,301,342  | 1,417,104 | 1,608,734     |                               |                                |  |  |  |  |
| 68                                                                                         | 133,118                          | 133,118 233,060 278,933                 |            | 459,431   | 536,563       | 668,467                       |                                |  |  |  |  |
| 104                                                                                        | 27,968                           | 46,100                                  | 56,895     | 98,431    | 122,377       | 161,150                       |                                |  |  |  |  |
| 130                                                                                        | 14,093                           | 20,212                                  | 24,970     | 39,117    | 50,048        | 64,680                        |                                |  |  |  |  |
| Asphalt Binder: Superpave Binder Test Data Asphalt General: Volumetric Properties as Built |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
| Angular Freq. = 10 rad/sec Effective Binder Content (%) 11.5                               |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
| Temperature (°F)                                                                           | G* (Pa)                          | Delta (degre                            | ee)        |           | Air Voids (   | %)                            | 5.8                            |  |  |  |  |
| 147.2                                                                                      |                                  |                                         | ,          |           | Total Unit    | Weight (pcf)                  | 145                            |  |  |  |  |
| 158                                                                                        |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
|                                                                                            |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
| 108.8                                                                                      |                                  |                                         |            | Leve      | 12            |                               |                                |  |  |  |  |
| Level 2 Asphalt Mix: Aggregate Gradation                                                   |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
|                                                                                            | Cumulativ<br>Retained            | ve %                                    | Percent Pa | assing    | ]             |                               |                                |  |  |  |  |
| 3/4 Inch Sieve                                                                             | 0                                |                                         |            | 100       |               |                               |                                |  |  |  |  |
| 3/8 Inch Sieve                                                                             |                                  | 12                                      | 88         |           |               |                               |                                |  |  |  |  |
| #4 Sieve                                                                                   |                                  | 27                                      | 73         |           |               |                               |                                |  |  |  |  |
| #200 Sieve                                                                                 | 9                                | 3.9                                     |            | 6.1       |               |                               |                                |  |  |  |  |
| Asphalt Binder: S                                                                          | uperpave Bi                      | inder Test Dat                          | a          |           | Asphalt Ge    | e <b>neral:</b> Volumetric Pr | operties as Built              |  |  |  |  |
|                                                                                            | Angular F                        | Angular Freq. = $10 \text{ rad/sec}$    |            |           | Effective B   | inder Content (%)             | 11.5                           |  |  |  |  |
| Temperature (°F)                                                                           | G* (Pa)                          | Delta (degre                            | ee)        |           | Air Voids (   | %)                            | 5.8                            |  |  |  |  |
| 147.2                                                                                      |                                  | , , , , , , , , , , , , , , , , , , , , |            | -         | Total Unit    | Weight (pcf)                  | 145                            |  |  |  |  |
| 158                                                                                        |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
| 168.8                                                                                      |                                  |                                         |            |           |               |                               |                                |  |  |  |  |
|                                                                                            |                                  |                                         |            | Leve      | el 3          |                               |                                |  |  |  |  |
| Asphalt Mix: Agg                                                                           | regate Grada                     | ation                                   |            |           |               | Asphalt General: \            | Volumetric Properties as Built |  |  |  |  |
|                                                                                            | Cumulative %<br>Retained Percent |                                         |            | assing    | ]             | Effective Binder Co<br>(%)    | 11.5                           |  |  |  |  |
| 3/4 Inch Sieve                                                                             | 0 100                            |                                         |            |           | Air Voids (%) | 5.8                           |                                |  |  |  |  |
| 3/8 Inch Sieve                                                                             |                                  | 12                                      | 88         |           | 4             | Total Unit Weight (           | pcf) 145                       |  |  |  |  |
| #4 Sieve                                                                                   |                                  | 27                                      | 61         |           | -             |                               |                                |  |  |  |  |
| #200 Sieve                                                                                 |                                  | 6.1                                     | 54.9       |           | Ţ             |                               |                                |  |  |  |  |
| Asphalt Binder: S                                                                          | uperpave Bi                      | inder Grading                           | :          | PG 76-22  | ]             |                               |                                |  |  |  |  |

## APPENDIX B—UNBOUND LAYER MATERIAL PROPERTIES (KIM ET AL., 2013)

|            | Percent Passing (%) |      |      |      | %    | %<br>Volum      | %         | %      | Max.<br>Drv      | Opt.<br>Moistur     |          | РІ       | Eros      |
|------------|---------------------|------|------|------|------|-----------------|-----------|--------|------------------|---------------------|----------|----------|-----------|
| Source     | #10                 | #40  | #60  | #200 | Clay | e<br>Chang<br>e | Swel<br>1 | Shrink | Density<br>(pcf) | e<br>Content<br>(%) | (%)      | (%)      | Inde<br>x |
| Lincoln    | 99.3                | 96.8 | 93.8 | 48.9 | 40.7 | 24.5            | 20.5      | 4.0    | 93.4             | 23.5                | 39.<br>9 | 8.6      | 4.23      |
| Washington | 99.8                | 84.6 | 56.1 | 23.8 | 20.6 | 4.7             | 4.5       | 0.2    | 117.8            | 11.0                | 23.<br>0 | 6.6      | 7.30      |
| Coweta     | 89.5                | 64.6 | 48.9 | 28.3 | 24.0 | 12.2            | 11.2      | 1.0    | 105.3            | 16.7                | 42.<br>5 | 11.<br>0 | 6.69      |
| Walton     | 89.4                | 61.5 | 50.5 | 36.3 | 28.3 | 4.0             | 1.0       | 3.0    | 104.8            | 16.8                | 40.<br>5 | 12.<br>7 | 5.71      |
| Chatham    | 99.9                | 97.4 | 93.5 | 3.6  | 1.8  | 0.0             | 3.6       | 0.0    | 97.4             | 12.7                | 0.0      | 0.0      | 9.76      |
| Lowndes    | 99.0                | 74.9 | 52.9 | 12.2 | 4.5  | 0.0             | 0.0       | 0.0    | 113.1            | 4.7                 | 0.0      | 0.0      | 8.65      |
| Franklin   | 97.3                | 89.4 | 70.9 | 31.1 | 19.6 | 5.2             | 3.0       | 2.2    | 105.1            | 22.6                | 39.<br>3 | 9.8      | 6.32      |
| Cook       | 79.9                | 66.4 | 46.6 | 25.0 | 18.4 | 0.6             | 0.6       | 0.0    | 113.1            | 9.9                 | 0.0      | 0.0      | 7.06      |
| Toombs     | 84.2                | 37.8 | 17.6 | 6.2  | 4.6  | 1.1             | 0.1       | 1.0    | 119.3            | 11.9                | 0.0      | 0.0      | 9.39      |

Table C.1- Subgrade Soil Properties

| QPL<br>ID | Aggregate<br>Group | Source<br>Location | GAB<br>Character     | Wopt<br>(%) | Max. γ <sub>d</sub><br>(pcf) | Wactual<br>(%) | Actual γ <sub>d</sub><br>(pcf) | Percent<br>Compaction | LA<br>Abrasion<br>(%) | Bulk<br>Specify<br>Gravity |
|-----------|--------------------|--------------------|----------------------|-------------|------------------------------|----------------|--------------------------------|-----------------------|-----------------------|----------------------------|
| 011C      | Π                  | Lithonia           | Granite<br>Gneiss    | 5.7         | 133.9                        | 4.3            | 133                            | 99                    | 50                    | 2.614                      |
| 013C      | Ι                  | Dalton             | Limestone            | 6.6         | 142.5                        | 4.7            | 139                            | 98                    | 25                    | 2.702                      |
| 024C      | II                 | Gainsville         | Mylonitic<br>Gneiss  | 6           | 136.6                        | 6.7            | 134                            | 98                    | 39                    | 2.605                      |
| 028C      | Π                  | Hitchcock          | Mylonitic<br>Gneiss  | 6.2         | 141.2                        | 5.6            | 138                            | 98                    | 18                    | 2.697                      |
| 050C      | II                 | Stockbridge        | Granite<br>Gneiss    | 5.9         | 134.2                        | 5.9            | 134                            | 100                   | 42                    | 2.611                      |
| 101C      | Π                  | Demorest           | Meta-<br>sandstone   | 5.3         | 137.4                        | 5              | 137                            | 100                   | 32                    | 2.642                      |
| 108T      | Ι                  | Mayo Mine          | Limerock             | 13.6        | 112.6                        | 11.5           | 110                            | 98                    | N/A                   | N/A                        |
| 118C      | Π                  | Columbus           | Granite<br>Gneiss    | 6           | 137.2                        | 6.5            | 135                            | 98                    | 33                    | 2.677                      |
| 141C      | II                 | Dahlonega          | Granite<br>Gneiss    | 5.6         | 135.2                        | 4              | 132                            | 98                    | 34                    | 2.646                      |
| 158C      | II                 | Walton<br>County   | Biotite<br>Gneiss    | 6.4         | 135                          | 4.5            | 132                            | 98                    | 41                    | 2.64                       |
| 165T      | II                 | I-75<br>Unadilla   | Recycled<br>Concrete | 7           | 134                          | 8.5            | 131                            | 98                    | N/A                   | N/A                        |

Table C.2- GAB Material Characteristics

|            | Sieve | 2"  | 1 1/2" | 3/4 in | No. 10 | No. 60 | No. 200 |
|------------|-------|-----|--------|--------|--------|--------|---------|
|            | mm    | 50  | 37.5   | 19     | 2      | 0.25   | 0.075   |
|            | MIN   | 100 | 97     | 60     | 25     | 5      | 4       |
|            | MAX   | 100 | 100    | 90     | 45     | 30     | 11      |
|            | 011C  | 100 | 100    | 70     | 33     | 16     | 5       |
|            | 013C  | 100 | 100    | 90     | 38     | 10     | 7       |
|            | 024C  | 100 | 100    | 74     | 26     | 10     | 4       |
| 0/ Dessing | 028C  | 100 | 100    | 71     | 30     | 14     | 6       |
| 70 Passing | 050C  | 100 | 100    | 85     | 43     | 20     | 6       |
|            | 101C  | 100 | 100    | 87     | 26     | 14     | 7       |
|            | 118C  | 100 | 100    | 71     | 31     | 14     | 6       |
|            | 141C  | 100 | 100    | 82     | 36     | 18     | 6       |
|            | 158C  | 100 | 100    | 77     | 29     | 13     | 5       |
|            | 165T  | 100 | 100    | 72     | 29     | 7      | 4       |

Table C.3- GAB Aggregate Gradations

## REFERENCES

- American Association of State Highway and Transportation Officials, <u>AASHTO Guide for Design</u> of Pavement Structures, Washington, DC, 1986.
- American Association of State Highway and Transportation Officials, <u>AASHTO Guide for Design</u> of Pavement Structures, Washington, DC, 1993.
- American Association of State Highway and Transportation Officials, <u>Mechanistic-Empirical</u> <u>Pavement Design Guide—A Manual of Practice</u>, Publication Code: MEPDG-1, ISBN: 978-1-56051-423-7, AASHTO, Washington, DC, 2008.
- American Association of State Highway and Transportation Officials, <u>Mechanistic-Empirical</u> <u>Pavement Design Guide—A Manual of Practice</u>, Second Edition, Publication Code: MEPDG-2, ISBN: 978-1-56051-597-5, AASHTO, Washington, DC, 2015.
- Applied Research Associates, Inc, *Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures: Part 1-Introduction and Part 2-Design Inputs*, Final Report, NCHRP Project 1-37A, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, DC, 2004a.
- Applied Research Associates, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures: Part 3-Design Analysis and Part 4-Low Volume Roads, Final Report, NCHRP Project 1-37A, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, DC, 2004b.
- Applied Research Associates, Inc, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures: Appendices A to C, Final Report, NCHRP Project 1-37A, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, DC, 2004c.
- Applied Research Associates, Inc, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures: Appendix D – User's Guide, Final Report, NCHRP Project 1-37A, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, DC, 2004d.
- Durham, S., Cetin, B., Schwartz, C., Forman, B., and Gopisetti, L.S.P., Improvement of Climate Data for use in MEPDG Calibration and Other Pavement Analysis, Final Report, Research Project Number 16-10, Georgia Department of Transportation, Office of Performance-Based Management and Research, Forest Park, Georgia, January 2019.
- Federal Highway Administration, Distress Identification Manual for Long Term Pavement Performance Program (Fourth Revised Edition), Publication No. FHWA-RD-03-031, Federal Highway Administration, Washington, DC, 2003.
- Kim, S., Measurements of Dynamic and Resilient Moduli of Roadway Test Sites, Final Report, Research Project Number 12-07, Georgia Department of Transportation, Office of Materials and Research, Research and Development Branch, Forest Park, Georgia, December 2013.

- Kim, S., Determination of Coefficient of Thermal Expansion for Portland Cement Concrete Pavements for MEPDG Implementation, Final Report, Research Project Number 10-04, Georgia Department of Transportation, Office of Materials and Research, Research and Development Branch, Forest Park, Georgia, October 2012.
- Kim, S., Etheridge, A., Chorzepa, M., Kim, Y.R., Effects of Asphalt Mixture Characteristics of Dynamic Modulus and Fatigue Performance, Final Report, Research Project Number 16-19, Georgia Department of Transportation. Office of Materials and Research, Research and Development Branch, Forest Park, Georgia, April 2019.
- National Cooperative Highway Research Program, Changes to the Mechanistic-Empirical Pavement Design Guide Software Through Version 0.900, NCHRP Research Results Digest 308, NCHRP Project 1-40D, Transportation Research Board, National Research Council, Washington, DC, 2006.
- Selezneva, Olga, and Von Quintus, H., Traffic Load Spectra for Implementing and Using the Mechanistic Empirical Pavement Design Guide in Georgia, Final Report, Research Project Number 10-09, PI Number 0010110, Georgia Department of Transportation, Office of Materials and Research, Research and Development Branch, Forest Park, Georgia, January 2014.
- Tsai, Y., Wang, Z., Purcell, R., Improving GDOT's Highway Pavement Preservation, Final Report, Research Project Number 05-19, Georgia Department of Transportation, Office of Materials and Research, Research and Development Branch, Forest Park, Georgia, 2009
- Tsai, J., Wu Y., Wang, C., Georgia Concrete Pavement Performance and Longevity, Final Report, Research Project Number 10-10, Georgia Department of Transportation, Office of Materials and Research, Research and Development Branch, Forest Park, Georgia, January 2014.
- Von Quintus, Harold L. and Chetana Rao, Long-Term Pavement Performance Program Determination of In-Place Elastic Layer Modulus: Backcalculation Methodology and Procedures, Publication Number FHWA-HRT-15-036, Federal Highway Administration, Turner-Fairbanks Highway Research Center, McLean, Virginia, March 2015.
- Von Quintus, H.L., Darter, M.I., Bhattacharya, B., and Sadasivam, S. Implementation of the Mechanistic Empirical Pavement Design Guide in Georgia, Research Project Number 11-17, Georgia Department of Transportation, Office of Performance Based-Management and Research, Forest Park, Georgia, 2015.
- Von Quintus, H.L., Darter, M., Mallela J., Bhattacharya, B., Sadasivam, S. Validation of the MEPDG Transfer Functions Using the LTPP Test Sections in Georgia, Research Project Number 11-17, Georgia Department of Transportation, Office of Performance Based-Management and Research, Forest Park, Georgia, 2013b.
- Von Quintus, H.L., Darter, M.I., Bhattacharya, B., and Titus-Glover, L., Calibration of the MEPDG Transfer Functions in Georgia, Research Project Number 11-17, Georgia Department of Transportation, Office of Performance Based-Management and Research, Forest Park, Georgia, 2014.

- Von Quintus, H.L., Darter, M.I., Bhattacharya, B., and Titus-Glover, L., Implementation and Calibration of the Mechanistic Empirical Pavement Design Guide in Georgia, Research Project Number 11-17, Georgia Department of Transportation, Office of Performance Based-Management and Research, Forest Park, Georgia, 2016.
- Von Quintus, H., Mallela J., Sadasivam, S., Darter, M. Verification and Local Calibration/Validation of the MEPDG Performance Models for Use in Georgia, Research Project Number 11-17, Georgia Department of Transportation, Office of Performance Based-Management and Research, Forest Park, Georgia, 2013a.
- Von Quintus, H.L. and J.S. Moulthrop, Performance Prediction Models: Volume I Executive Research Summary, Publication Number FHWA/MT-07-008/8158-1, Montana Department of Transportation, Research Programs, Helena, MT, 2007a.
- Von Quintus, H.L. and J.S. Moulthrop, Performance Prediction Models: Volume II Reference Manual, Publication Number FHWA/MT-07-008/8158-2, Montana Department of Transportation, Research Programs, Helena, MT, 2007b.